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Abstract
We consider the problem of solving TAP mean field equations by iteration for
Ising models with coupling matrices that are drawn at random from general
invariant ensembles. We develop an analysis of iterative algorithms using a
dynamical functional approach that in the thermodynamic limit yields an
effective dynamics of a single variable trajectory. Our main novel contribution
is the expression for the implicit memory term of the dynamics for general
invariant ensembles. By subtracting these terms, that depend on magnetiza-
tions at previous time steps, the implicit memory terms cancel making the
iteration dependent on a Gaussian distributed field only. The TAP magneti-
zations are stable fixed points if a de Almeida–Thouless stability criterion is
fulfilled. We illustrate our method explicitly for coupling matrices drawn from
the random orthogonal ensemble.
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1. Introduction

TAP equations provide generalized mean field equations for statistical physics models with
random, infinite range interactions which (under certain conditions) are assumed to be exact
in the limit of an infinite system [1]. In recent years there has been an increasing interest in
such equations within and also outside the statistical physics community. This is partly due to
the fact that the TAP approach can be applied to statistical inference in probabilistic models in
information theory [2, 3], statistics [4] and machine learning [5, 6]. Originally developed by D
J Thouless, P Anderson and R Palmer for the Sherrington–Kirkpatrick (SK) model of an Ising
spin glass [7], the TAP approach has been generalized to a variety of other problems [4]. This
includes models with continuous variables rather than Ising spins but also cases where the
independent random interactions are replaced by other, more structured statistical ensembles
that allow for certain dependencies.

While methods for deriving the TAP approach for different models are now well
established it is not necessarily clear how the resulting system of nonlinear equations can be
solved efficiently. A naive algorithm based on a simple iteration of the equations usually fails
to achieve convergence. This problem has been addressed by a paper of Bolthausen for the
case of the SK model [8]. He has analyzed the dynamics of iterations rigorously and has
shown how the iterations can be altered in order to achieve exponential convergence (above
the so-called AT line of stability). Other ideas to arrive at a convergent method are based on
taking the limit of dense couplings in belief propagation algorithms, see [2, 9] and [10], (for
rigorous analyses [3] and [11]). Unfortunately, for this approach it is necessary to augment the
original variables by auxiliary ones, such that the interactions in the new model are inde-
pendent. For example, the Hopfield model can be represented by a bipartite graph of Ising
spins and continuous variables. It is not clear how such a method should be set up for a matrix
of interactions with more general statistical dependencies. Also, taking the dense coupling
limit of an approximate message passing (AMP) algorithm valid for sparse coupling problems
will not always lead to the correct dense coupling algorithm. Here we will construct a theory
for dynamics using dense couplings as the starting point.

In this paper we will address the problem of solving TAP equations for Ising models with
dense random coupling matrices with a general invariant probability distribution. Our analysis
is based on dynamical mean field theory which allows the study of the dynamics of iterative
algorithms in the thermodynamic limit by a suitable average over the ensemble of couplings.
It turns out that by including certain memory terms in the iteration, the effective field in the
dynamics becomes a simple Gaussian random variable suggesting that the dynamics might
converge. The explicit form of the memory terms depends explicitly on the statistical
ensemble of couplings. We show that our method reproduces previous convergent algorithms
for SK and Hopfield models. We also work out the details of our theory for the spin model
with orthogonal random couplings [12, 13]. Simulations of the resulting algorithms show
exponential convergence above a line of stability which can be identified with the so-call-
edde Almeida–Thouless (AT) line.

The paper is organized as follows: in section 2 we introduce the general random matrix
formulation for the TAP equations. In section 3 we present the results of dynamical functional
theory (DFT). In section 4, we introduce ‘the single-step memory construction’ iterative
algorithm for solving TAP equations. Section 5 is devoted to the derivation of theAT
stability condition. The discussion and outlook are presented in section 6. Lengthy technical
derivations are deferred to the appendix.
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2. General invariant random matrix ensembles

We will consider Ising models with pairwise interactions given by the Gibbs distribution for
the spins S S S, , N1( )= ¼

SP
Z

J S S h S
1

exp 1
i j

N

ij i j
i

N

i i( ) ( )
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥å å= +

<

with Z denoting the normalization constant. We are interested in the case where the matrix J
is random with the condition that the marginal density of couplings p Jij( ) is the same for all
pairs (i, j) but couplings might be dependent random variables. A simple way to define such a
class of random matrices is via the so-called invariant ensembles [14]. A random matrix J̃ is
called invariant if it has the same probability distribution as V JV˜† for an orthogonal matrix V
which is independent of J̃ . Equivalently, it admits the spectral decomposition

J O O 2˜ ( )†L=

where O is Haar distributed (i.e. it is a random orthogonal matrix) and independent of the
diagonal matrixL. This characterization of invariant matrices involves the diagonal elements
Jii˜ which are absent in (1). However, one can show that as N tends to infinity if the spectrum
of J̃ converges almost surely to a compactly supported distribution such that the smallest and
largest eigenvalue of J̃ converge almost surely to the infimum and supremum of the support,
respectively, we have (in the almost sure sense) JJ tr 0, iii N

1˜ ( ˜)-  " as N tends to infinity,
see A. In other words the diagonal elements of an invariant matrix converge to the same
deterministic limit. Thus, we may define asymptotically invariant couplings J as J Jij ij˜b= for
i j¹ and J 0ii = , where we include an inverse temperature factor β in the definition. The
couplings for the standard SK and Hopfield models belong to this class of matrices for J( ˜)-
being the Gaussian Wigner matrix and the null Wishart matrix (i. e. a sample covariance
matrix of independent Gaussian random vectors whose entries are zero mean, independent
and identical distributed), respectively.

2.1. The generating function and the R-transform

We will later need the generating function of asymptotically invariant random matrices given
by [13, 15]

Q
N

G lim
1

log e 3QJ
J

N

trN
2( ) ( )( )

¥


with the symmetric matrix Q having a finite rank. Since we believe that our paper might be of
interest to researchers with an information theory background, we will briefly mention how G
is related to quantities which are well known in the theory of free probability [16], which is a
powerful approach to random matrix theory. Setting

xG
1

2
d R 4

x

0
( ) ( ) ( )ò w w=

one can show that R equals the so-called R-transform (in the theory of free probability) of the
limiting spectrum. Its formal definition can be given in terms of the Cauchy transform: let P
denote the limiting spectrum of J . Moreover let

† Here (·)† denotes transposition.
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where mn are nth order moments of the limiting spectrum P, i.e. m dPn
n( )ò l l= . Then the

R-transform of P is given by

x x
x

R M
1

61( ) ( ) ( )= --

with M 1- denoting the composition inverse of M. It admits the power series expansion

x c xR , 7
n

n
n

1

1( ) ( )å=
=

¥
-

where cn are known as the free cumulants of P. For example, the first two free cumulants c1
and c2 are the mean and variance of the distribution P, respectively, i.e. c m1 1= and
c m m2 2 1

2= - . For details we refer the reader to [17].
In the following we give the R-transforms for some random matrix ensembles that we

will discuss later. We first point out the simple identity

x x cR R . 81( ) ( ˜ ( ) ˜ ) ( )b b= -

In this expression R̃ denotes the R-transform of the limiting spectrum of J̃ and c R 01̃ ˜ ( )= . We
next provide the explicit form of xR( ) for the SK, Hopfield and random orthogonal [12, 13]
models, respectively: (i) for the SK case we have a (symmetric) matrix J̃ whose diagonal
entries are zero and upper-triangle entries are independent identically distributed (iid)
Gaussian with zero mean and variance N1 . Note that in this case we have J J ;˜b= so that

x xR 2( ) b= [17]; (ii) for the Hopfield model, we consider entries of an N N( )a ´ matrix H
that are iid and Gaussian with zero mean and variance Na . Moreover let J H H˜ †= - , i.e.

J( ˜)- is a null Wishart matrix whose limiting spectrum is given by the Marchenko–Pastur
distribution. By invoking the R-transform of the Marchenko–Pastur distribution, see e.g. [17],
we have

x
x

x
R

1
; 9

2
( ) ( )b a

ba
=

+

(iii) Finally, for the random orthogonal case we consider a spectral decomposition (2) such
that J O O˜ †L= . Here the diagonal entries of the diagonal matrixL are composed of ±1 such
that tr 0( )L = . Then, one can easily show that

x
x

x
R

1 1 4

2
. 10

2 2

( ) ( )
b

=
- + +

The latter result was given in [12].

2.2. TAP equations for general invariant couplings

TAP equations are a set of self-consistent equations for the vector of magnetizations m S⟨ ⟩=
where the brackets denote expectation w.r.t. the Gibbs distribution (1). For a general invariant
ensemble they have been derived first in [12] using the large N scaling of a perturbation
expansion. A second derivation using the cavity method and the large N limit of the ‘adaptive’
TAP equations can be found [4]. We have provided a more rigorous derivation of the
transition from ‘adaptive TAP’ to the self-averaging limit using random matrix theory in
appendixB. The resulting TAP equations read
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m tanh 11( ) ( )y=

h Jm mqR 1 12( ) ( )y = + - -

where m mq
N

1 † and h is the vector of non-random external fields. Note that the only
dependency on the random matrix ensemble is via the R-transform qR 1( )- in the so-called
Onsager term which is a correction to the naive mean field term Jm. One can show that iY is
the mean of the cavity field. Furthermore, following the calculations of [4] one finds that iY is
Gaussian distributed (in the large N limit) with respect to the random couplings J with mean
hi and variance

h q qR 1 . 13i i
2⟨( ) ⟩ ( ) ( )Y - = ¢ -

Hence, the subtraction of the Onsager term mqR 1( )- from the mean field Jm makes the
remainder Gaussian. We will next transfer the idea of a Gaussian field from the static
solutions to the dynamics of an algorithm.

3. The results of dynamical functional theory

Dynamical properties of disordered systems can be computed by the method of dynamical
functionals [18]. In the limit N  ¥ this method provides us with exact results for the
marginal distribution of a trajectory of a single variable (in our case a magnetization mi(t)),
when we define a dynamics of an algorithm for the solution of the TAP equations. As a
typical result of such a calculation one finds that the ‘field’ Jm t( ) becomes a sum of a
Gaussian term and a memory term which includes the magnetizations at all previous times.
This memory often makes the dynamics of disordered systems highly complex allowing, e.g.
for a persistent dependency on the initial conditions and thus a failure to converge to a unique
fixed point. Hence, we propose to introduce explicit memory terms which are chosen to
cancel the implicit memory terms derived from the DFT. In such a way, at each time step, the
update of the magnetization for the algorithm involve a Gaussian distributed random field
only and we expect that we might obtain good convergence results. This Gaussian property of
the effective dynamical field was already shown for a Hopfield model in [2] and [9] (and
proved in [3]) and reappeared in Bolthausen’s iterative construction of solutions to the TAP
equations for the SK model in [8].

We start with defining a set of dynamical equations which could serve as a candidate
algorithm for solving the TAP equations for invariant random coupling matrices

m mt f , 14t
t

0
1( ) ({ ( ) ( )} ) ( )g t t= t=

-

h Jmt t 15( ) ( ) ( )g = +

for t0, ,t = ¼ which depend on the field Jm t( ) and the previous local magnetizations m ( )t .
Here ft is an appropriate sequence of nonlinear scalar functions. Our goal is to obtain the
statistics of a single trajectory of (14)–(15), when J is a random matrix with generating
function (3). To do so we make use of the DFT analysis as described in [19, 20] which is a
discrete time version of the method of [18]. We also refer the reader to [21] where DFT was
used to analyze the AMP algorithm in the context of the CDMA communication algorithm.
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We introduce the generating functional corresponding to the dynamics (14)–(15) as

l m m m
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Note that lZ t 0 1({ ( ) })= = . The statistics of the variables can be computed from the
averaged generating functional lZ t J⟨ ({ ( )})⟩ . In the large N limit we obtain that (see C)
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with ; ,(· ) m S denoting the multivariate normal distribution with mean μ and covariance Σ.
This result shows that in the large N limit single trajectories can be treated as independent
following the effective stochastic dynamical process given by

m mt f , 18t
t

0
1( ) ({ ( ) ( )} ) ( )g t t= t=

-

h mt t s t, . 19
t

0

1

( ) ˆ ( ) ( ) ( ) ( )åg ft= + +
t=

-

Here t( )f is a vector of independent Gaussian random variables with covariance matrix f
given by

c , 20
n

n
k

n
k n k

1 0

2
2( ) ( )†   å å=f

=

¥

=

-
- -

where  and  are T×T the response and the correlation matrices, respectively. With slight
abuse of notation, their t 1, 1( )t+ + indexed entries are given by

t
N

m t
,

1
21

i

N
i

i1
i

( ) ( )
( )

( ) åt
f t

=
¶
¶

f=

t
N

m t m,
1

. 22
i

N

i i
1

i
( ) ⟨ ( ) ( )⟩ ( ) åt t= f

=

Moreover the specific random matrix ensemble enters the result through the coefficients cn,
see (7), and the memory matrix ̂ given by

R . 23ˆ ( ) ( ) =

So far we have not yet referred to the TAP equations in the DFT analysis. Instead we have
considered a somewhat general dynamical system with disorder and memory. Such a
formulation gives us enough freedom to construct a convenient dynamics which
asymptotically converges to the solution of the TAP equations. We will define the dynamics
to be of the form
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m t t1 tanh 24( ) ( ( )) ( )y+ =

where the variables ti ( )y must be chosen to become independent Gaussian fields in the
resulting effective single variable dynamics (19). In fact, there are actually various methods
for doing so. In the following we will limit our attention to a method that we call the single-
step memory construction.

4. The single-step memory construction

In the single-step memory algorithm we will construct the update in such a way that the
resulting memory term (23) satisfies the equation

t t, 0, 1. 25ˆ ( ) ( ) t t= " ¹ -

Hence, if (25) holds, then using (19) we find that the variable

m ht t t t t, 1 1 26( ) ˆ ( ) ( ) ( ) ( )g f- - - = +

becomes a Gaussian field. We will choose the field t( )y in (24) as a linear combination of the
Gaussian fields ( )f t , t1, ,t = ¼ of the form

ht t 1, 27
t

0

( ) ( )( ( ) ) ( )åy ft t= + +
t=

where we have to construct the non-random terms t 1,( ) t+ to make the dynamical order
parameters consistent with the single-step memory condition (25). This condition leads to a
very simple result for the response function (21) because there is no complicated propagation
in the time of a response to an external field. In fact, from (24) we obtain for the response
function (21)

t
N

m t
t

,
1

1
1

28
i

i
i

i

2( ) ( ( ))
( )

( )
( ) åt

y
f t

= -
¶ -
¶

q t t1 , 29( ( )) ( ) ( ) t= -

with m mq t t t
N

1( ) ( ) ( )† . Thus we have the explicit result

t
t

q t
,

,

1
. 30( ) ( )

( )
( )


t

t
=

-

Finally, using (23) we obtain an explicit result for the response function in terms of the
memory terms t t, 1ˆ ( ) - . Note that by construction of the single-step memory matrix ̂ (25)
we can write (23) as

t a s s, , 1 , 31t
s

t

1

( ) ˆ ( ) ( ) t = -t
t

-
= +

where the coefficients an are obtained from the power series expansion of the composition
inverse of the R-transform:

x a xR . 32
n

n
n1

1

( ) ( )å=-

=

¥

By definition the trace of J is zero, i.e. R 0 0( ) = . Hence, the power series expansion in (32)
starts from the first order term.

To complete the specification of the single-step memory construction we only need to
specify t t, 1ˆ ( ) - . This will be chosen such that the method is asymptotically consistent
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with the static TAP equations. Specifically, from (12) we should have

t t qlim , 1 R 1 33
t

ˆ ( ) ( ) ( ) - = -
¥

We choose the explicit form

t t
q t

q t
q t, 1

1

1 1
R 1 1 , 34ˆ ( ) ( )

( )
( ( )) ( ) - =

-
- -

- -

which assuming convergence q t q( )  as t  ¥ leads to (33). This form has also the
advantage that in (30), for the update an unwanted factor q t1 1( )- + , which would make

t( )y depend on the future state m t 1( )+ , cancels.

4.1. Summary

Putting everything together the single-step memory algorithm for t 0 is defined as

m t t1 tanh 35( ) ( ( )) ( )y+ =

ut Q t a 36
t

t
0

1( ) ( ) ( ) ( )åy t=
t

t
=

+ -

u
h Jm m

t
t t t t

Q t q t

, 1 1

1 1
37( ) ( ) ˆ ( ) ( )

( )( ( ))
( )

=
+ - - -

- -

where we introduce

Q t q Q t q tR 1 1 R 1 38
t

0

( ) ( ( )) ( ) ( ( )) ( ) t= - = - -
t=

such thatQ 1 1( )- = . The memory term t t, 1ˆ ( ) - is given by (34). Moreover the algorithm
initializes with m t 0( ) = for t 1, 0{ }Î - .

4.2. Asymptotic consistency with TAP equations

In the following we show that if the single-step memory algorithm (35)–(37) converges, it
solves the TAP equations (11)-(12). Let us assume that m mt( )  as t tends to infinity. To
have the convergence to the TAP equations we solely need to show that the sum in (36)
converges to the proper limit. From (27) and (30) we must have

Q t
a

q Q q t
t

1 1

1

1 1
1, 1. 39

t
t

t

0

1

0
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( ( )) ( ) ( )

( ) ( )å åt t
t

- -
=

- +
+ 

t

t

t=

+ -

=

We make the so-called weak long-term response assumption [22] that

tlim , 0, finite . 40
t

( ) ( ) t t= "
¥

Hence, for sufficiently large t and tt¢ < such that t t¢ being finite as t  ¥, we can write

t t1, 1, 41
t t

0

( ) ( ) ( ) å åt t+ +
t t t= = ¢



a qR 1 42
t

t
t

1
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=
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a qR 1 43
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( ) ( )å -
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q qR R 1 1 . 441( ( )) ( )= - = --

Next we will provide the details of the single-step memory algorithm for the SK, Hopfield and
random orthogonal models.

4.3. Example1: the SK-model

Recall that for the standard SK model we have x xR ;2( ) b= so that x xR 1 2( ) b=- .
Hence, a 11

2b= and an = 0 for n 1> . Thus, the single-step memory algorithm may written
as

m t t1 tanh 45( ) ( ( )) ( )y+ =

h Jm mt t q t t1 1 . 462( ) ( ) ( ( )) ( ) ( )y b= + - - -

At first glance, these dynamical equations are similar but not exactly equal to those proposed
by Bolthausen [8]. The difference is that instead of the dynamical order parameter q(t) the
fixed point solution of q appears. Using the explicit form of the covariance of the field ti ( )y
given by (60) in the next section, one finds for the field variance

t t q ti i
2 2⟨( ( ) ⟨ ( )⟩) ⟩ ( )y y b- = . Hence, if we start the iteration (as in [8]) with m q1i ( ) =

such that q q1( ) = , then we find that in the large N limit, we also have
q t t qtanh 1i

2( ) ⟨ ( ( )⟩y= - = for all times t and we get agreement with [8].

4.4. Example2: the Hopfield model

For the Hopfield model from (9) we have

x
x

x
R

1
. 471( ) ( )

ba b
=

-
-

Thus the memory coefficients are given as a 1n
n 1( )ab= + for n 1 . In the following we

show that the single-step memory algorithm for the Hopfield model coincides with the AMP
algorithm which was introduced in the context of the CDMA problem in [2] and compressed
sensing in [9]. From (36) we first write

u ut
Q t

t
Q t

48
t

t

2 2
0

1

( ) ( ) ( ) ( ) ( ) ( )åy
ab ab

b t= +
t

t
+

=

-

u
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t q t t
1

R 1 1 . 49
2

( ) ( ) ( ( )) ( ) ( )y
ab b

= + - -

For convenience let us introduce

A t
q t

q t q t

R 1

1 1 1
. 50( ) ( ( ))

( ( )) ( ( ))
( )

ba
b

ba
-
-

=
+ -



Note that from (37) we may write (49) in the form of

h Jm mt A t t q t A t t A t t
1

1 1 1 1 . 51( ) ( )[ ( )] ( ( )) ( )[ ( ) ( ) ( )] ( )y y
b

a= + + - - - - -
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Then, defining z mt t A t t( ) ( ) ( ) ( )y - , we write the single-step memory algorithm as

m z mt t A t t1 tanh 52( ) ( ( ) ( ) ( )) ( )+ = +

z h J m zt A t t q t A t tI
1

1 1 53( ) ( )[ ( ) ( )] ( ( )) ( ) ( ) ( )
b

b a= + - + - -

where I is the identity matrix of appropriate dimension. Note that JI( )b- asymptotically
coincides with the corresponding central Wishart matrix (see section 2). Thereby we exactly
obtain the AMP iteration steps as introduced in [2]. We also refer the reader to the related
works [3] and [21], where the dynamics of the AMP algorithm is analyzed by means of DFT
and Bolthausen’s conditioning technique [8], respectively.

Bolthausen’s conditioning technique for the SK model [8] and Hopfield model [3] is
based on the assumption that the entries of the underlying coupling matrix are defined via
zero-mean iid and Gaussian distributed random variables, see section2.1. Recently, it has
been shown in [11] that the same analyses can be obtained without the need for the Gaussian
distribution assumption but a sub-Gaussian tail condition of the distribution is required.
Indeed, thanks to the central limit theorem, one can show that the generating function (3) also
yields the same result regardless of whether the Gaussian distribution assumption is con-
sidered or not, see [23 section 5].

4.5. Example3: the random orthogonal model

For the random orthogonal model from (10) we have x x xR 1 2 2( ) ( )b= -- . This yields the
memory coefficients as

a
n

n

1
is odd

0 is even.

54n n 1 ( )
⎧
⎨⎪
⎩⎪
b= +

In figures 1 and 2 we illustrate the convergence of the single-step memory algorithm for the
random orthogonal model obtained by running simulations. Note that after a few iteration
steps the convergence becomes exponentially fast. The flat lines around 300( )- dB, i.e.
10−30, are the consequence of the machine precision of the computer which was used.

The convergence improves with increasing temperature parameter 1 b . On the other
hand, for large enough β, the algorithm fails to converge. To estimate the critical parameter,
we study the inverse decay time measured by the angle θ as illustrated in figure 1 and
extrapolate the simulational data to 0q = using a convenient range of β. One might expect
that the critical β would coincide with the one obtained from an AT stability condition which
can also be derived from the TAP approach [4]. The AT line is given by the equation

q
N

R’ 1 1 with
1

1 tanh 55
i

N

i
1

2 2( ) ⟨( ( )) ⟩ ( )åa a y- = -
=



where the random variable iy is a Gaussian with mean hi and variance q qR 1( )¢ - . Note, that
[4] contains a typo in the corresponding expression. In figure 3,

we present a comparison between the simulations and (55). This coincidence can be
understood from a dynamical point of view by analyzing the stability of the dynamics close to
the fixed point. The details will be postponed to section5. Finally, it also worth noting that
the trajectories of the algorithm show a self-averaging behavior above the AT line for large N.
On the other hand, we find that, below the AT line, there are strong sample to sample
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fluctuations. However, by averaging order parameters over many samples, we obtain a good
agreement with the theory. Since the main goal of this paper is to present a convergent
algorithm we will leave a more careful investigation of this point to future publications.

Figure 1. Random orthogonal model with 1, 3, ,9, 11{ }b Î ¼ , hi = 1 and N 214= .
Here e.g. ,3 5{ }q q qÎ substitutes the respective linear decay time (in the log-domain),
i.e. the convergence is faster the largerθ is.

Figure 2. Random orthogonal model with 1, ,5, 7{ }b Î ¼ , hi = 2 and N 214= . The
inverse temperature 6.9b = gives the AT line.
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4.6. The field covariance matrix

In order to compare simulations of systems with analytical results obtained from the dyna-
mical functional approach in the limit N  ¥ and to study the stability of TAP fixed points
we have to perform expectations over the Gaussian random variables ti ( )y (see (27)). Spe-
cifically we write

m m
N

t t q t q t t t
1

1 1 2 , 1 56J
2⟨ ( ) ( ) ⟩ ( ) ( ) ( ) ( )- - = + - - - 

where the order parameter  is given by

t t
N

x y t x t y1, 1
1

dP , tanh tanh . 57
i

N

i i
1

( ) ( ) (⟨ ( )⟩ ) (⟨ ( )⟩ ) ( ) òå y y+ ¢ + = + ¢ +
=

Here P denotes a two-dimensional Gaussian distribution with zero mean. The mean of the
field ti ( )y follows from (27) as

t Q t
a

q Q
h

1 1
. 58i

t
t

i
0

1⟨ ( )⟩ ( )
( ( )) ( )

( )
⎧⎨⎩

⎫⎬⎭åy
t t

=
- -t

t

=

+ -

Hence, we need to compute the corresponding covariance matrix which is defined as

t t t t t t, . 59i i i i( ) ⟨( ( ) ⟨ ( )⟩)( ( ) ⟨ ( )⟩)⟩ ( ) y y y y¢ = - ¢ - ¢y

In appendix D we derive the expression

t t Q t Q t
x y l m

q l q m Q l Q m
,

Co A , ,

1 1 1 1
. 60

l t m t

x y

,

t l t m1 1

( ) ( ) ( )
[ ( )] ( )

( ( ))( ( )) ( ) ( )
( )



 
å¢ = ¢

- - - -¢
y

+ - ¢+ -

In this expression, for a power series f x y a b x y,
n k n k

n k
, 0

( ) å= , we have introduced the

symbol f x y a bCo ,x y n kn k [ ( )]  for its coefficients. Moreover the function A is defined as

Figure 3. Consistency of the diverging decay time with the AT line: the simulations
were based on the average over ten realizations of J with N 214= .
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Figure 4. Above the AT line: comparison of the theory and simulation for 20b = and
hi = 1, N 214= .

Figure 5. Above the AT line: comparison of the theory and simulation for 20b = and
hi = 1, N 214= .

J. Phys. A: Math. Theor. 49 (2016) 114002 M Opper et al

13



x y
x y

y xA ,
1

R

1

R
. 61

1 1

1

( )
( ) ( )

( ) ( )
⎛
⎝⎜

⎞
⎠⎟- -

- -

-



The function A has a relatively simple form for the three random matrix ensembles
considered in this paper. For the SK and Hopfield models we have x y xyA , 2( ) b= and

x y xyA , 2( ) ( )b a= , respectively. Moreover, for the random orthogonal model, from
x x xR 1 2 2( ) ( )b= -- we have x yCo A , 1x y nk

n n1 2n k [ ( )] ( )d b= - + . We next compare our
simulations with theoretical results. We used the initializations m t 0( ) = for t 0, 1{ }Î ,
hence we assign 1, 0 0( ) = . In figures 4 and 5 we show such a comparison above the AT
line. Note that no averaging over coupling matrices was used for the simulations. The inte-
gration over two-dimensional correlated Gaussian distribution used to calculate t t, 1( ) -
was performed numerically. However the accuracy of the numerical method limits us from
providing very precise results as t grows. In figure 4 we illustrate the theoretical prediction of

m mt m 1
N

1 ( ) ( )† - by the order parameter t t, 1( ) - for a large range of t. Below the AT line,
the single-step memory algorithm diverges and simulated trajectories show strong sample
fluctuations. However, by taking an average over a large number of trajectories we obtain a
good agreement with the theory (see figure 6).

4.7. Asymptotic consistency with cavity variance

In section 4.2 we have demonstrated the convergence of the single-step memory algorithm to
the TAP equations. In a similar way one can show that (60) converges to the variance of the
static field variance in (13) as t and t¢ tend to infinity. Specifically, by invoking the weak long-
term response assumption (40) in (20) and following similar steps as in appendixD, for
sufficiently large t, tt < , t¢ and tt¢ < ¢ such that tt and tt¢ ¢ being finite as t and t¢ tend
infinity, one can show that

Figure 6. Below the AT line: comparison of the theory and simulation for 10b = and
hi = 2, N 212= . J⟨·⟩ is obtained by 5 103´ realizations of J .
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t t
q

q
x y q q,

1
Co A , R 1 R 1 62

t t
x y

t t
2

,

1 1
t t1 1( )

( )
[ ( )] ( ) ( ) ( )

 
å¢

-
- -

¢ ¢

¢ ¢
y

t t

t t+ - + -
t t+ - ¢+ - ¢

q

q
x y q q

1
Co A , R 1 R 1 63

n k
x y

n k
2

, 1

n k

( )
[ ( )] ( ) ( ) ( )


å-

- -

q

q
q q

1
A R 1 , R 1 . 64

2( )
( ( ) ( )) ( )=

-
- -

In this expression, by abuse of notation, we denote x ylim A ,y x ( ) by x xA ,( ). Its explicit
form is given by

x y x
x

x xlim A , R
1

R
R R R . 65

y x

1 2
1

1 2 1( ) ( ( ))
( ( ))

( ( )) ( ( )) ( )=
¢
=

¢



-
-

- -

Hence we have

t t
q

q
q qlim ,

1
R R 1 R R R 1 66

t t, 2
1 2 1( )

( )
( ( ( ))) ( ( ( ))) ( ) ¢ =

-
- -

¢

¢
y

¥

- -

q qR 1 . 67( ) ( )= ¢ -

5. The stability of TAP fixed points

In order to analyze the stability of the fixed points of the single-step algorithm we resort to a
linear stability analysis. We add Gaussian white noise to the dynamics, i.e. we set

t t ti i i( ) ( ) ( )y y + with ti
2⟨ ( ) ⟩ = and discuss the limit 0  . If the static TAP fixed

point is stable, then the system should asymptotically show only small stationary fluctuations
around this and we can work in the Fourier domain. Hence, we assume

t t,
1

2
d e 68t ti( ) ˆ ( ) ( )( ) òp
w w¢ = ¢w -

t t,
1

2
d e . 69t ti( ) ˆ ( ) ( )( ) òp
w w¢ = ¢

y y
w -

Inserting these Fourier representations into (60), for large t and t¢ we may write (see (62)–
(64))

x y

q q q

Co A , e

1 R 1 R 1
70

l t m t

x y
l t m t

l t m t
,

i

2 1 1

t l t m1 1ˆ ( )
[ ( )] ˆ ( )

( ) ( ) ( )
( )

( ( ))




 
åw

w

- - -¢

¢

¢y

w - - -

- - - -

¢+ - ¢+ -



q q

q

A e R 1 , e R 1

1
. 71

i i

2

( ( ) ( ))
( )

ˆ ( ) ( ) w
- -

-

w w-


For small noise 0  , the assumption of stability translates into small fluctuations around the
static solution and we can write

q c2 72ˆ ( ) ( ) ˆ ( ) ( ) w p d w w+

q q c2 R 1 . 73ˆ ( ) ( ) ( ) ˆ ( ) ( ) w p d w w¢ - +y y

where we have separated fluctuations into static and dynamical parts. We will analyze the
dynamical part next, but note that also the static part q will have contributions from ò. Thus
for 0w ¹ we have
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c c
q q

q

A e R 1 , e R 1

1
. 74

i i

2
ˆ ( ) ˆ ( ) ( ( ) ( ))

( )
( )w w=

- -
-

y

w w-

where now the value of q is computed for 0 = . We next express ĉ ( )w in terms of ĉ ( )wy for
small ò. The calculation in E is based on expanding

t t
N

u t h u t h1, 1
1

tanh tanh 75
i

i i u( ) ⟨ ( ( ) ) ( ( ) )⟩ ( ) å+ ¢ + = + ¢ +

up to first order in ò. The brackets denote expectations over the two-dimensional Gaussian
field u t u t,( ( ) ( ))¢ with u t u t s s t t t t0 ,⟨ ( ) ( )⟩ ( ( ) ) d¢ + - ¢ + ¢ for 0  , where
s q qR 10 ( )= ¢ - and s t t c t t,( ) ( )- ¢ = ¢y . For t t= ¢ the integral is over a single Gaussian
only. The calculation shows that

c c1 76ˆ ( ) ( ˆ ( )) ( )w a w= + y

with α is defined as in (55). Combining this relationship with (74) we have

c
q q

q
1

A e R 1 , e R 1

1
. 77

i i

2

1

ˆ ( ) ( ( ) ( ))
( )

( )
⎛
⎝⎜

⎞
⎠⎟w a

a
-

- -
-

w w- -



In fact, for the SK, Hopfield and random orthogonal models, we have x yCo A , 0x yn k [ ( )] =
n k" ¹ . Therefore (77) is actually independent of ω and from (65) we explicitly have that

c
q1 R 1

. 78ˆ ( )
( )

( )w
a

a
=

- ¢ -

In general, the right-hand side of (77) must be non-negative to have a valid representation
as a Fourier-transform of a time dependent correlation function. While the term

q qA e R 1 , e R 1i i( ( ) ( ))- -w w- is always positive, see (71), the second term is small and
positive for sufficiently small β. But it changes sign and diverges. One expects that the
divergence will occur first for the long range fluctuations, i.e. for the limit of low frequencies.
Taking the limit yields

c
q

lim
1 R 1

. 79
0

ˆ ( )
( )

( )w
a

a
=

- ¢ -w

The condition

qR 1 1 80( ) ( )a ¢ - =

for the onset of instability agrees with the well-known AT stability criterion [4].

6. Discussion and outlook

In this paper we have presented a theoretical approach to the design of iterative algorithms for
solving the TAP equations for Ising models with random couplings drawn from general
invariant ensembles. We were guided by the idea that one needs to subtract terms from the
internal field which depend on the values of the magnetizations at previous times. Using
dynamical functional theory we have shown that in such a way, memory terms can be
canceled and one arrives at a Gaussian distributed field, which eventually converges to the
cavity field provided that a stability condition is fulfilled. We have presented a specific
method which we have called the ‘single-step memory construction’. Our approach may be
extended in several ways. For example other subtraction methods are possible. One might
design an alternative scheme, where the response function is required to be zero after one time
step leading to a somewhat different algorithm and we will give details elsewhere. It would be
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interesting to see in which cases the explicit memory terms in the subtraction method can be
simplified by introducing auxiliary variables as is possible for the Hopfield model. Other
extensions of our method would be to more general probabilistic models beyond the simple
Ising case. This would include continuous random variables and other forms of interactions.
An application to models of compressed sensing would be interesting where certain random
matrix ensembles (such as the random orthogonal ones) might be natural models for the
observation matrix. Specifically one can trivially extend the random orthogonal ensemble by
considering the more general spectrum such that the eigenvalues of J̃ are distributed as

1 1 1( ) ( ) ( )ad l a d l- + - + . In the context of compressed sensing this model coincides
with the so-called random row-orthogonal ensemble [24, 25]. We will discuss details in a
forthcoming publication. Finally, it would be important to address a drawback of our method
which prevents an application to probabilistic inference problems with arbitrary data. Our
subtraction scheme depends explicitly on the random matrix ensemble of couplings which
may not be known in practice. Hence it would be interesting to develop schemes which adapt
to the concrete data which would then achieve convergence to ‘adaptive TAP equations’ of
[4], providing possible alternatives to the currently applied message passing algorithms [6].
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Appendix A. The proof of JJ tr 0ii N

1˜ ( ˜ )- 

From (2) we have

O OJ O A.1ii
n

N

n n n ii
n

N

n in
1 1

2˜ [( )] ( )†å ål l= =
= =

where On is the nth column vector of Haar (orthogonal) O and n nnl = L . Note that L is
independent of O. For convenience we treat the realizations of L from its probability space
and denote as ( )wL . We show the convergence for every realization
J Oii n

N
n in1

2˜ ( ) ( )åw l w= =
. The mean and variance of Jii˜ ( )w are, respectively, given by

J O A.2ii
n

N

n in
1

2⟨ ˜ ( )⟩ ( )⟨ ⟩ ( )åw l w=
=

J O O OVar Var 2 Cov , A.3ii
n

N

n in
n k

n k in ik
1

2 2 2 2[ ˜ ( )] ( ) [ ] ( ) ( ) [ ] ( )å åw l w l w l w= +
= <

where for the random variables X and Y, XVar[ ] and X YCov ,[ ] denoting the variance X and
the covariance of X and Y, respectively. For the proof, we basically need to show that

Jlim Var 0. A.4
N

ii[ ˜ ( )] ( )w =
¥

To do this we make use of the so-called (orthogonal) Weingarten calculus that allows to for
calculate joint moments of Haar entries (analogous to Wick calculus for Gaussian matrices).
For details we refer the reader to [26, 27]. From [27 theorem 2.1, example 2.1] we have
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O O
n k

n k
. A.5in ik

N

N N N

N N

2 2

1
2 1

3
2

⟨ ⟩ ( )( )( )

( )

⎧
⎨⎪
⎩⎪

=
¹

=

+
+ -

+

Furthermore we have O N1ij
2⟨ ⟩ = , i j," . Thus, the variance (A.3) reads

J
N

N N N N N
Var

2 1

2

4

2 1
. A.6ii

n

N

n
n k

n k2
1

2
2

[ ˜ ( )] ( )
( )

( )
( )( )

( ) ( ) ( )å åw l w l w l w=
-
+

+
+ -= <

Note that the spectrum J̃ is assumed to converge almost surely to a compactly supported
probability distribution such that the smallest and largest eigenvalue of J̃ converge (almost
surely) to the infimum and supremum of the compact support, respectively. This implies that
the minimum and maximum of the eigenvalues of J̃ are uniformly bounded above for a
sufficiently large N. This is a sufficient to get (A.4) from (A.6). Thereby we complete the
proof.

Appendix B. The self-averaging limit of adaptive TAP equations

We will provide a derivation of the TAP equations (11)–(12) from the ‘adaptive TAP’
approach of [4]. Under the assumption of Gaussian distributed cavity fields and an approx-
imate linear response argument one finds

m h J m V mtanh B.1i i
j

ij j i i ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟å= + -

V
1

B.2i ii
ii

( )
c

= L -

V
m

1

1
B.3ii i

i
2

( )L = +
-

with the positive definite matrix J 1( )c L - - .
To obtain the TAP equations in (11)–(12) we basically need to show thatV qR 1i ( )- .

To that end we write (B.2) in the form of

J
V

ln det
. B.4i ii

ii

1( ) ( )
⎛
⎝⎜

⎞
⎠⎟

L
= L -

¶ -
¶L

-

Our basic idea is to simplify Jln det( )L - using the results of free probability theory for
random matrices. To that end we invoke an additional assumption that the empirical
distribution function of , ..., NN

N
11{ }L L converges weakly and almost surely to a

compactly supported probability distribution as N  ¥. Since J is asymptotically invariant
and has a compactly supported limiting spectrum,L and J are asymptotically (almost surely)
free [26]. Thus, due to the uniform convergence property of the R-transform, see [17 lemma
3.3.4], for a sufficiently large N we have

x x xR R R B.5J J
N N N( ) ( ) ( ) ( )+L L- -

x xR R B.6N
J
N( ) ( ) ( )= - -L

where we denote the R-transform of the spectrum of an N×N symmetric matrix X by RX
N .

Note that we have Jq1 tr
N

1 1( )L- = - - . Then, from lemma 1 below we have
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J
N

q
1

ln det 1 ln 1 d R B.7J

q
N

0

1
( ) ( ( )) ( ) ( )ò w wL - = - + - + -L

-

-

q1 ln 1 d R d R B.8J

q
N

q
N

0

1

0

1
( ( )) ( ) ( ) ( )ò òw w w w- + - + - -L

- -


N
V q VI

1
ln det 1 d R B.9J

q
N

0

1
( ) ( ) ( ) ( )ò w wL= - + - -

-

where V is defined through the implicit equation q1
N i

N

V

1
1

1

ii
( ) å- = = L -

. This implies that

J Vtr tr I1 1( ) ( )L - L -- - . Here from (B.8) to (B.9) we make use of the identity (B.19)
below. Note that for a non-negative N × N matrix X we can write the Stieltjes transform of the
eigenvalue distribution of X, say PNX, as x xM dPX X

N N( ) ( ) ( )òw w= - with , 0( )w - ¥ .
Then from (B.5) we use the subordination property [28, Chapter 22] as
M M R MJ J

N N
J
N

A
N( ) ( ( ( )))w w w+ -L L- - and take the limit 0w  . Doing so yields

V R q1( )- where we note that x xR lim RN J
N( ) ( )= ¥ . We also note that Oq

N

1

ii
( )=¶

¶L
.

Hence for large N we can write

J V

V

Iln det ln det 1
B.10

ii ii ii

( ) ( ) ( )L L¶ -
¶L

¶ -
¶L

=
L -



which yields V V qR 1i ( )= - .

Lemma 1. Let an N×N matrix X be positive definite. Let XQ tr
N

1 1( )= - . Then,

X
N

Q
1

ln det 1 ln d R . B.11X

Q
N

0
( ) ( ) ( ) ( )ò w w= - + + -

Proof. Note that

X XIln det lim ln det . B.121( ) ( ) ( )


= +
¥

-

For convenience let XItr
N

1 1( ) (( ) ) h + - for 0 > . Since X is positive definite we can
write [29]

R
1

. B.13X
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( )
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
 

h
h

h
- =

-

Applying the substitution t t( )w h to the following integral we have

t
t t t
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XQ
N

Iln 1
1

ln det B.181( ) ( ) ( ) ( )  h= + - + +-

with Q ( ) ( )  h . In other words we have

X
N

QI
1

ln det 1 ln d R . B.19X

Q
N1

0
( ) ( ( ) ( )) ( ) ( )

( )
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

òh w w+ = - - + --

Taking the limit   ¥ we complete the proof.

Appendix C. Derivation of DFT results

For the sake of notational compactness let

m m mt fg , , . C.1t t
0 0

1({ ( ) ( )} ) ( ( ) ({ ( ) ( )} )) ( )g gt t d t t-t t= =
-

By the Fourier representation of the Dirac function we write

l m mZ t t t td d d g , e e .

C.2

h Jm l

t

T
t t t t t t

0

1

0
i i({ ( )}) ( ) ( ) ˆ ( ) ({ ( ) ( )} )

( )

ˆ ( ) ( ( ) ( )) ( ) ( )† †ò  g g gt t= g g g
t

=

-

=
- -

The derivation is separated into two parts: (i) the disorder average and (ii) the saddle-point
method.

C.1. Disorder average

For convenience let us introduce N×T matrices X and X̂ with Xnt
m t

N

1n ( )= + and

Xnt
t

i N

1nˆ ˆ ( )= g +
. We need to evaluate

e e C.3
Jm m J
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Qt t t t tr
t

N

n

cn
n

ni
2 2

1 ( )
{ ˆ ( ) ( ) ( ) ˆ ( )} ( )† †


å åg g- +



with Q XX XXˆ ˆ† †= + . Here (C.3) follows directly from (3)–(7). We will evaluate

Q XX XXtr tr . C.4n n( ) (( ˆ ˆ ) ) ( )† †= +

in terms of the matrices (C.4)

X X C.5ˆ ( )† 

X X C.6( )† 

X X C.7˜ ˆ ˆ ( )† 
Then by using cyclic invariance of the trace we obtain the expression

Q ntr 2tr tr I , , , C.8n n

k

n
k n k

0

2
2( ) ( ) { ( ) ˜} ( ˜) ( )†       å= + +

=

-
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where the function I satisfies

I , ,
0. C.9

0

( ˜)
˜ ( )

˜

  
 

¶
¶

=
=

This means that I contains more than one factor ̃ and will thus at the saddle-point value
0̃ = not contribute to saddle-point equations.
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C.2. The saddle-point calculation

We write as

l

m m

m m m
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By the Fourier representation of Dirac function we write the last line of (C.10) as

c d d d e . C.11
m m mt s iN t s t s t s N t s t s t s N t s t si , , i , , , ,
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Here c is a constant irrelevant for the saddle-point calculation. We define the auxiliary single-
site partition function

Z l m t t t m, , , d d d g ,

e e
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In this way we can write (C.10) as
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In the large N limit we can perform the integrations over , , , , ,ˆ ˆ ˜ ˜̂      with the saddle-
point methods. Doing so yields:

t s
N

m t s,
i

C.14
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n n Zn
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t s
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t s
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t s,
1

. C.16
n

n n Zn
˜( ) ⟨ ˆ ( ) ˆ ( )⟩ ( )˜ å g g= -

with Zn⟨ ⟩ ˜ denoting the average with respect to the single-site partition function. Here the
quantity (C.16) has only the trivial solution that 0t s,̃ = . Other solutions may violate the
normalization lZ t 0 1({ ( ) })= = . Furthermore this solution leads to 0̂ = . By invoking
(C.8) we have

R C.17ˆ ( ) ( ) =
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Thus, for large N we get the factorization of the generating function
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We linearize the quadratic terms in tnˆ ( )g by introducing auxiliary Gaussian random fields
tn ( )f which are iid for each n with zero mean and covariance
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Doing so leads (C.19) to
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Finally, note that m t si n n
m t

sn

n

n
n

⟨ ( ) ˆ ( )⟩ ⟨ ⟩( )
( )

g- =f f f
¶
¶

. Thus,  equals the response function (21).
This completes the derivation.

Appendix D. Derivation of equation (60)

First note that from (27) and (30) we have

t t
t t
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1 1
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where f is defined as in (20). For sake of compactness we let f x xR 1( ) ( )= - . By elementary
combinatorics and using f ( ˆ ) = we can show that any power of the matrix can be written
as

f xCo . D.2k
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where for any power series f x a x
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n( ) å= we represent the coefficient via the definition

a f xCok xk ( ( )) . This means that we have
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Hence we also obtain
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where we have extended the definitions of coefficients f x y a bCo ,x y n kn k [ ( )]  to double
power series f x y a b x y,
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( ) å= . Summing up the geometric series, we have
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Putting everything together completes the proof.

Appendix E. Derivation of equation (76)

For the sake of compactness, without loss of generality, we may set h hi = . Using the
representation of the Gaussian density in terms of the characteristic function we have the
expansion for t t¹ ¢
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The last line is obtained by representing k k1 2, etc, by derivatives with respect to u1 and u2.
Repeating a similar equation for t t= ¢, we obtain
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Both expansions can be represented in the single equation
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Note that only the second term contributes to the dynamic part of the fluctuations. Hence, by taking
the Fourier-transform and noting that u h1 tanhu h

u

tanh 2( )( ) = - +¶ +
¶

the result is obtained.
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