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Abstract
A formula expressing the fermionic determinant as an infinite product of
smaller determinants is derived and discussed. These smaller determinants are
of a fixed size, independent of the size of the lattice and are indexed by loops
of increasing length.

Keywords: lattice fermions, determinant, loops

1. Introduction

The study of the effects of virtual particles has a very long history. In particular the vacuum
polarization due to electron–positron pairs was studied first by Euler and Heisenberg [1] and
later by Schwinger [2].

Let us mention some of the later developments: the vacuum polarization to all orders is
given by the fermion determinant. Its mathematical properties were studied later for instance
by Seiler [3] in the context of constructive quantum field theory, where a stability problem
arising in four dimensional quantum electrodynamics was pointed out. This latter issue was
studied more extensively by [4]. The study of this issue culminated in the work of Fry [7]
which also includes the effect of fermions on non-abelian gauge fields.

The quantum effects on vortex fields were analyzed by Langfeld et al [5], using
Schwingerʼs propert time formalism. Schmidt and Stamatescu [6], also using this formalism,
pointed out that the fermion (and boson) determinant on the lattice can be viewed as a gas of
closed loops which can be simulated numerically via a random walk.

In this note we also consider lattice gauge theories; we derive and discuss a general loop
formula for the fermion determinant. This formula provides a systematic approximation for
the fermionic determinants which can be used in full QCD analyses. In particular it proved
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useful in problems of QCD at non-zero chemical potential where it allowed to set up the so
called HD-QCD (for high density quantum chromodynamics) approximation for large mass
and chemical potential [8–10] which was used for physically relevant simulations in leading
(LO) and next-to-leading orders (NLOs) [11–14]. This formula involves, however, some
subtleties both in its derivation and in its interpretation and we think it is of some interest to
address them here.

Let us repeat that the formula itself is not new, but in this note we provide some
necessary clarifictions of its status.

This loop formula is based on the loop expansion derived long ago by one of us [15] for
the logarithm of the determinant with Wilson fermions in an external gauge field. This
logarithm is expressed there as a power series expansion in the hopping parameter κ, in which
each term is given as a sum of closed loops. The loop formula proceeds from this expansion
and expresses the full determinant as a product over determinants of a much smaller fixed
dimension (the tensor product of spin and color spaces) involving closed loops on the lattice
of increasing complexity [12]. It involves the resummation of nested infinite series and
therefore its correctness beyond formal algebra depends on (absolute) convergence. We will
discuss in more detail the derivation of the formula as well as its limitations and possible
misunderstandings in using it, since one might think that the zeroes of the determinant are
given by the zeroes of the factors of the product. In fact this is not the case, as we will explain
in the following, and the formula should instead be understood as a systematic approximation,
as illustrated below.

In particular for a finite lattice this formula expresses the determinant which is a poly-
nomial of finite order in the hopping parameter as an infinite product. Obviously this can
make sense only where the infinite product converges, which is equivalent to convergence of
the expansion of its logarithm; this convergence will break down at the latest at the first zero
encountered, either on the left-hand side (lhs) or in one of the factors on the right-hand
side (rhs).

A simple example might help at this point to illustrate both derivation and problems of
the loop formula. Consider

k- + = k- +x y1 e . 1x yln 1( ) ( )( ( ))

We expand the logarithm in powers of κ and x y, , but for bookkeeping purposes we treat x y,
as non-commuting symbols, so we consider the string xxyy as different from xyxy. This way
we get

k k k
k

k

k

- + =- - - + +

- + + + + + + +

- + + + 

x y x y xx yy xy

xxx xxy xyx xyy yxx yxy yyx yyy

xxxx xxxy

ln 1
2

2

3

4
. 2

2

3

4

( ( )) ( ))

( )

( ) ( )

Symbolically we can write

å åk
k

- + = -x y
l

s x yln 1 , , 3
l

l

s
l

l

( ( )) ( ) ( )

where s x y,l ( ) stands for strings of lengh l formed from x and y. Next we introduce ‘primary
strings’ sl

P as those strings that are not repetitions of other strings and resum now first over all
repetitions of primary strings (‘s-resummation’ in the following) and then over the primary
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strings. This way we get

åååk
k

- + = -x y
ls

s x yln 1 , . 4
l s s

ls

l
P s

l
P

( ( )) ( ) ( )

Up to cyclic permutations the primary strings of length 1 are x and y, of length 2 there is only
xy, of length 3 there are xxy yyx xyy yxx xyx yxy, , , , , , of length 4 xxxy xxyy, etc. Notice that
xyxy is not a primary string but a repetition of the string xy. We now introduce equivalence
classes sl

P[ ] for the l strings of length l differing by cyclic permutations and obtain

ååå

åå

k
k

k

- + =-

= -

x y
s

s x y

s x y
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So we obtain

k k k k
k k k
k k

- + = - + - + -
+ - + - + -
+ - + - + 
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After exponentiation this gives

k
k k k k k

k k k

- +
= - - - - -

´ - - - ´ 

x y

x y xy x y xy

x y x y xy

1

1 1 1 1 1

1 1 1 . 7

2 3 2 3 2

4 2 2 4 3 4 3

( )
( )( )( )( )( )

( )( )( ) ( )

Regarding now the symbols x y, again as complex numbers we turn to the question of
convergence. One can see in this example that truncating the product by keeping only the
factors containing up to k4 the lhs is only reproduced up to order k5:

k k k k k
k k k
k k k

- - - - -
´ - - -
= - + + + + + +

x y xy x y xy

x y x y xy

x y x y x y x y xy O

1 1 1 1 1

1 1 1

1 2 2 . 8

2 3 2 3 2

4 2 2 4 3 4 3

5 4 3 2 2 3 4 6

( )( )( )( )( )
( )( )( )

( ) ( ) ( ) ( )

Of course this mechanism will operate the same way at any order: truncation at order kn will
produce an approximation to the determinant up to order k +O n 1( ).

To determine when this expansion converges, note that for x y, 0 all terms in
equation (2) have the same sign, so this expansion converges absolutely for k < +x y1 ( ).
For general x y, we thus have absolute convergence of any reordering and resumming of the
expansion for k- +x yln 1( ( )), provided

k <
+x y

1
, 9

∣ ∣ ∣ ∣
( )

so in particular the expansion equation (5) converges. Exponentiating we obbtain
convergence of the infinite product equation (7).

One can see directly that in this region neither the lhs nor any of the factors on the rhs
vanishes, so in the region of convergence there is no paradox of one side vanishing with the
other side non-vanishing. The infinite product on the rhs converges in this region to the lhs,
which provides the analytic continuation to all of 2.

It should not be surprising that the location of the zeroes of the lhs is not well
approximated by the zeroes of the factors on the rhs: the lowest zeroes as given by the two
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linear factors, k k- -x y1 1( )( ), e.g., are at k = x1 and k = y1 , whereas the true zero is
at k = +x y1 ( ). Only after expanding the truncated product we obtain a first order
approximation of the lhs: k k k k- - = - + +x y x y O1 1 1 2( )( ) ( ) ( ).

In the following we shall first present the principle leading to this formula in section 2,
then briefly describe its derivation for QCD with Wilson fermions, which involves some
subtleties, in section 3. Details and illustration of both the derivation of the loop formula and
of its problems are given in the appendices.

2. The idea in a nutshell

The principle behind the formula is easy to explain: let

k= - = = W M M i n; 0, 1, 10ii ( )
be a N×N matrix. Then

å
k

= -
=

¥

W
l

Mln det tr 11
l

l
l

1

( )

which converges as long as k<M 1∣∣ ∣∣ or even as long as the spectral radius r <M 1( ) . We
can interprete Mtr l , which involves a l-fold sum over the matrix indices as a sum over all
closed paths (journeys or loops) of length l over the the index set. To be precise, we define a
path of length l as a map

  l N: 0, 1, , 1, 2, 12l { } { } ( )
with  =l 0l l( ) ( ). Furthermore we define a weight for each path

  =
=

-

+M M , 13
i

l

i i
0

1

, 1l l l
( )( ) ( )

so that


å=M Mtr . 14l

l

l
( )

and


åå

k
= -

=

¥

W
l

Mln det . 15
l

l

1 l

l
( )

The weight defined in equation (13) is clearly invariant under cyclic permutations of
 l0, 1, ,{ }, so it makes sense to introduce equivalence classes l[ ] of paths l that can be

mapped onto each other by a cyclic permutation. So we finally can write


ååk= -

=

¥

W Mln det . 16
l

l

1 l

l
( )

[ ]

As long as the series (15) converges absolutely, we can make any kind of rearrangement,
summing first over (finite or infinite) subsets of paths; the result will not be affected. For
instance we can define primary paths l

P of length l as paths which are not repetitions of other
paths, and rewrite the formula as


ååå

k
= -

=

¥

=

¥

W
sl

Mln det , 17
l s

sl
s

1 1
l
P

l
P( ) ( )
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



ååå åå

k
k=- = - -

=

¥

=

¥

=

¥

s
M Mln 1 . 18

l s

sl
s

l

l

1 1 1l
P

l
P

l
P

l
P( ) ( ) ( )

[ ] [ ]

After exponentiating, this gives


  k= -

=

¥

W Mdet 1 . 19
l

l

1 l
P

l
P( ) ( )

[ ]

This last expression looks like a factorization of Wdet , but it is not, because the convergence
requirement limits its validity. Absolute convergence can hold at most for k k< c∣ ∣ ∣ ∣ where kc

is the zero of Wdet closest to the origin. But of course it may break down earlier, because
convergence of the logarithmic expansion equation (11) does not imply absolute convergence
of the path sum equation (16): absolute convergence of equation (16) requires

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

å k
<Mlim sup

1
20

l

l1

l

l
∣ ∣ ( )

[ ]

whereas absolute convergence of equation (11) requires only

k
<Mlim sup tr

1
, 21

l

l l1∣ ∣ ( )

which is a much weaker condition. In fact the latter can easily be estimated in a way
independent of the ‘volume’ N:

 rM N M N Mtr , 22l l l l1 1 1∣ ∣ ( ) ∣∣ ∣∣ ( )

but it is in general not true that


 å M N M 23

l

l
∣ ∣ ∣∣ ∣∣ ( )

and therefore it is difficult to find estimates for Mtr l l1∣ ∣ ∣ independent of N.
So in general there is no simple relation between the zeroes of the factors of equation (19)

and those of Wdet .
In the next section we turn to the main problem of deriving a similar loop formula for the

Dirac–Wilson determinant. There the index set is composed of lattice indices and internal
ones (spinor, color, flavor) and the definitions of loops etc are modified accordingly. On the
other hand, the Dirac–Wilson operator connects only nearest neighbor lattice points, which
leads to a tremendous simplification, since instead of the ‘flight journeys’ considered here, we
have only paths consisting of nearest neighbor steps.

3. The loop formula for the Dirac–Wilson determinant

We use here the Wilson fermion formulation in d=2 or 4 dimensions

åk k

k

= - = - G + G

- G + Gm m
=

-

+ -
- -

+
-

-
- -

 W Q U T T U

U T T Ue e , 24
i

d

i i i i i i
1

1
1 1

4 4 4 4 4
1

4
1

( )

( )] ( )

where κ is the hopping parameter, mT are lattice translation, mU are link matrices (assumed here
in the fundamental representation of SU(3) or SL C3,( )), μ is the chemical potential and
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*g g g gG =  = =m m m m m  , , , 252 ( )

G = G = G G = G = Gm m m m m m    dtr , det 0, 0, 2 262 ( )

are Wilsonʼs projectors for the Dirac d.o.f.ʼs. In this formulation the loop formula takes a
simpler form, since back-steps are forbidden. See also appendix A.

The loop formula [11, 12, 15] for a finite simple square (d=2) or hypercubic (d=4)
lattice reads:

k k= - = - W Q Qdet det exp tr ln , 27( ) ( ( )) ( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥




ååå= -

=

¥

=

¥ g

s
exp tr , 28

l s

s

D C
s

1 1
,

l

l

l
[ ] ( )

{ }




  = -
=

¥

 gdet , 29
l 1 D,C

l

l l
( ) ( )

{ }

 k= mtg e . 30l N r
l

( ) ( )

Here r is the net winding number of the path in the time direction, with periodic or
antiperiodic b.c. and  = + -1 1( ) correspondingly. We assume periodic b.c. in the ‘spatial’
directions. Notice that the terms in Q imply unit steps on the lattice, therefore a lattice path l

in equation (29) is a closed chain of lattice points as produced by the lth power of Q in
equation (27). Due to the trace condition a path must close, but it can repeatedly visit the same
lattice point before closing (the Pauli principle was used in writing the determinant, after that
everything is only matrix algebra). Notice that this condition also implies that on an even
lattice l is even. In the following we shall speak of the l paths in equations (28) and (29)) as
primary paths. They are distinguishable, non-exactly self-repeating lattice closed paths of
length l. Since the primary paths are closed paths and the ensuing trD C, do not depend on
cyclic permutations of their points we do not identify a starting point for l . Nonetheless, in
producing such a path we can start at each of its points, therefore we get a multiplicity factor l.

We define the loops l
as the chains of links and Γ factors on the primary path l and

call them primary loops. A loop, however, may be repeated in covering the path l before the
Dirac and color traces of trD C, close, and the exponent s in equation (28) counts the repetitions
in covering l. Since stepping further after completing the primary path we only obtain
identical paths, however, these repetitions do not produce a further multiplicity factor,
therefore no further factor s counting the repetitions appears. These considerations have been
taken into account in equations (28) and (29).

With λ denoting the links along l we have:




  





  = G = G G = G =
l

l l
l

l
l

l
Î Î Î

U U U U, , . 31
l

l

l l l

l

l

l

( )

The Dirac factors GtrD l
can be calculated for each l geometrically [15] or numerically.

The contribution of one- and two-dimensional loops   , :ll
˜˜ linear and planar loops

closing on or over the lattice, in (29) further simplifies to




   -
=

¥

 hdet , 32
l

d

1 C

2

l

l l
( ) ( )

{˜ }
˜ ˜
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
     = - + -

=

¥
-h U h U h1 tr tr , 33

l
C C

d

1

2 1 3 2

l

l l l l l
( ) ( )

{˜ }
˜ ˜ ˜ ˜ ˜

    k= ´ G = ´ G G =mth g
d d

2
tr e

2
tr , det 0. 34l N r

l l l l l
( ) ( )

where equation (33) holds for SL C3,( ) (SU(3)) gauge group.
In deriving equations (32) and (33) we used the fact that the Dirac and Yang–Mills traces

in equation (28) factorize and the former concern products of the projection operators
equations (25) and (26):

  = G Utr tr tr , 35D C
s s s

, l l l
[ ] [ ] [ ] ( )

⎡
⎣⎢

⎤
⎦⎥ G = G

d d

2
tr

2
tr , 36s

s

l l
[ ] ( )

where the second equation holds for linear and planar loops [15]. In particular, e.g. for straight
Polyakov loops and their inverses  =

t
PN ,  =- -

t
P1 1

N
we have

z z z k z k= = = =m m-t t-h h2 , 2 , e , e . 37P
N

P
N1( ) ( ˜ ) ˜ ( )

For loops which explore more than two dimensions of the lattice equation (36) does not hold
generally and therefore equation (29) cannot always be rewritten similar to equation (33).

We shall speak of basic paths as primary paths without repeated visitation of a point.
Notice that the number of basic paths is finite on a finite lattice. The primary paths are
obtained by chaining basic paths in arbitrary order and arbitrarily often repeated (only the
resulting chain as a whole should not be repeated). Hence even on a finite lattice there are
infinitely many primary paths.

Notice therefore that the rhs of the loop formula on any lattice is an infinite product.
Since on a finite lattice the determinant is a polynomial in κ of order =N dN Nmax L c with
=d 2, 4 the dimension, NL the lattice volume, Nc the number of colors the loop formula

implies cancellations of the higher orders. This happens algebraically (i.e. without worrying
about convergence), but it is justified analytically only if the nested infinite series involved
converge absolutely. See the discussion in section 2.

On the other hand arbitrarily truncating the rhs by keeping only a finite number of factors
up to some l0 will make the loop formula into an approximation of order l0. The zeroes
suggested by the rhs are therefore not true zeroes of the determinant but will corroborate to
provide the approximation of the latter to the above order.

When we are dealing with finite temperature and m > 0, with (anti-)periodic boundary
conditions in time the coefficients for loops with positive net winding number >r 0 in the
time direction will have coefficients containing powers of ζ and can therefore be of order 1 or
larger:

 k k z z k= = = - =m
s t

mt s tg e l l r N, 0, e . 38l N r l r N
l

( ) ( )

It is useful therefore in this case to reorder the loops according to powers k sl , the lowest order
(LO) being given by straight Polyakov loops, the higher orders will involve Polyakov loops
‘decorated’ by spatial excursions. To LO and NLO we can use equations (33), (34) and (37)
for these loops, see [11, 12] for details. Notice that it is important to use here the s-
resummation which brings the loops into the determinant factors, in order to avoid large
numbers in the exponents. Loops without windings have no ζ factors and start at order k4.
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For completeness the formal derivation is described in detail in appendix B. In
appendix C we illustrate on two simple examples the evaluation of the formula and the
problem of the zeroes.

4. Conclusions

The loop formula equations (27)–(29) expresses the determinant of the  ´ Wilson
fermionic matrix, with  = ´ ´N N NLattice Dirac Color, as an infinite product of determinants
of a fixed (independent of NLattice), small dimension ´N NDirac Color

2( ) . The loop formula is
based on the loop expansion given in [15], which itself represents a hopping parameter
expansion, and its derivation requires careful reordering of the terms and resummation of
infinite nested series. This way one obtains an algebraically correct representation, whose use
as an approximation requires, however, a convergence analysis.

The infinite product of small determinants on the rhs can be ordered according to the
length of the loops or to the order of the hopping parameter. The individual zeroes of the rhs
are not zeroes of the lhs but the rhs converges to the big, exact determinant of the lhs in the
region below the lowest zeroes. Truncation of the rhs after a given loop length produces
approximations of the lhs after expanding the product and retaining the terms up to the
corresponding order.

The formula provides a valid series of approximations in its range of absolute conv-
ergence; this domain does, however, not include the zeroes of the full determinant nor those
of any approximants. It can thus not be used for an approximate determination of the zeroes of
the full determinant, but the approximants can still be useful, e.g. in problems of QCD at finite
chemical potential (or density). The formula may be interpreted as providing an ensemble of
loops; this suggests that higher orders, which are hard to evaluate algebraically, might be
instead be produced by stochastic generation of loops as in [6].

Appendix A. Grand canonical partition function for QCD with Wilson fermions at
μ > 0

 òb k g g m k g m= b g-DU U, , , , e , , , , 39G F
S U

F F
, ,G G( ) [ ] ( { }) ( )( { })

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟å åb g

b
g

g= - +
> =

S U
N

Re P P, , tr
1

, 40G G
G j i

ij G
i

i
c 1

3

4( { }) ( )

 k g m k g m=U W U, , , det , , , , 41F F F( { }) ( { }) ( )

åk k

k g

= - = - G + G

- G + Gm m
=

+ -
- -

+
-

-
- -

 W Q U T T U

U T T Ue e 42
i

i i i i i i

F

1

3
1 1

4 4 4 4 4
1

4
1

( )

( ) ( )

*g g g gG =  = = G = G =m m m m m m m   , , , tr 4, det 0 432 ( )

k
g m g

=
+ +

=
+ +M M

1

2 3 cosh

1

2 3
, 44

F F0( ) ( )
( )
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(one flavor). Here M is the ‘bare mass’, M0 the bare mass at m = 0, U denote the link
variables and T lattice translations. For completeness we introduced anisotropy factors g g,G F
which have to be tuned, by requiring isotropy of physical quantities at m= =T 0 (hadron
masses, string tension etc), defining so a unique physical anysotropy of the lattice spacings
h = s ta a which will enter the physical temperature, chemical potential, masses, etc. In the
following g g= = 1G F . The exponential prescription for μ ensures cancelling of divergences
in the small a limit.

Appendix B. Formal derivation

In the following we shall formally derive the loop formula. For illustration we shall refer to
figure B1 . With

k= -W Q 45( )

we have at first step

åk
k

= - = -
=

¥

W Q
n

Qtr ln tr ln tr , 46
l

n
n

1

( ) ( ) ( )





ååå= -

=

¥

=

¥ g

s
tr , 47

l s

s

D C
s

1 1
,

l

l

l
[ ] ( )

{ }

Notice:
(1) Due to the traces we obtain only connected, closed loops on the lattice (without

backtracking for Wilson fermions).
(2) We consider now primary loops l

. They are of all possible lengths l and may close
on or over the toroidal lattice.

Example. In Qtr1

4
4 the loop -S V S UtrD C, 1 1 2

1
2 appears with multiplicity 4 (since it can be

started at each node) while leading each time to the same contribution by cyclicity of trD C, —

see figure B1 right.

(3) Each primary loop can appear repeated any number of times s. As already pointed
out, because of the indistiguishability in the repetition there is no further multiplicity.

Figure B1. Case 1 and case 2,  = -1 1( ) for periodic boundary conditions (pbc)
(apbc), repectively. On the right plot the inverse links are no longer indicated.
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Example. On a 1-dim periodic lattice of length 2 the term Qtr1

2
2 has 2 loops closing over the

lattice, U U1 2 and U U2 1, contributing equally =U U U Utr trD C D C, 1 2 , 2 1, see figure B1 left. Since
the corresponding paths are identical we speak of them as one primary loop with multiplicity
2, contributing thus ´ U U2 trD C

1

2 , 1 2 in the loop formula.

The term Qtr1

4
4 of order n=4 contains +U U1 2

4( ) and has just 2 different terms,

U U U U1 2 1 2 and U U U U2 1 2 1, allowed by the lattice trace (notice that a term like U U1
2

2
2 cannot

appear since each link is associated with a lattice step). One can see U U U U2 1 2 1 as the first
permutation ofU U U U1 2 1 2, further permutations do not bring new loops. The contributions of
these two loops to the ensuing trD C, are equal by cyclicity of the trace. Therefore we speak
here of just one loop, say U U U U1 2 1 2. Since it is a genuine repetition it does not represent a
primary loop, but the s=2 repetition U U1 2

2( ) of the primary loopU U1 2 of multiplicity 2 and
contributes therefore ´ U U2 trD C

1

4 , 1 2
2[( ) ] in the loop sum.

(4) Identification of primary loops.

Example. The loops - -S V S U1 1 2
1

1
1 and -S V S U1 1 2

1
2 are basic loops, the first one is a plaquette,

the second a decorated Polyakov loop, both appearing with multiplicity 4.
- - - - -S V S U S V S U S V S U1 1 2

1
1

1
1 1 2

1
1

1
1 1 2

1
2 is a primary loop, consisting of the iterated basic loop

Plaquette and the basic Polyakov loop and has multiplicity 12. In contrast to this, the loop
- - - - - -S V S U S V S U S V S U1 1 2

1
1

1
1 1 2

1
1

1
1 1 2

1
1

1 is not a primary loop but the s=3 repetion of the basic
loop plaquette - -S V S U1 1 2

1
1

1 and appears therefore with multiplicity 4.

We now make the 2nd step to obtain:

=W Wdet exp tr ln , 48( ) ( )




  = -
=

¥

 gdet . 49
l 1 D,C

l

l l
( ) ( )

{ }

Notice:
(5) The summands in equation (47) are Dirac and color traces, that is just complex

numbers. Each summand corresponding to a primary loop is of the form

 
  å- = -

=

¥


g

s
gtr tr ln 50

s

s

D C
s

D C
1

, ,
l

l l l
[ ] ( ) ( )

since this is just the expansion of a logarithm (s-resummation). It is the repeated covering of
primary loops which resumes to the logarithms.

(6) Using equation (50) we can rewrite equation (47) as




 åå- -
=

¥

 gtr ln 51
l

D C
1

,

l

l l
( ) ( )

{ }

Since the summands commute we can exponentiate and rewrite equation (47) as







     = -

=

¥
-

=

¥

 ge det , 52
l

g

l1

tr ln

1 D,C
l

D C l l

l

l l
, ( ) ( )

{ }

( )

{ }

by inverting the general formula equation (50). This is equation (29).
As remarked before, the zeroes suggested by the rhs factors of the loop formula generally

are not zeroes of the lhs, but keeping the LO factors up to some order may provide reasonable
approximations for the lhs, depending on the parameters and configuration.
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A particular situation occurs for the case of large mass and chemical potential. Here the
temporal loops disentangle in the limit k m z k  ¥ = =m fixed0, , e and the determi-
nant reduces to the ‘HD-QCD’ determinant in LO, here for antiperiodic boundary conditions
(apbc) ( = -1)

= + + -


 D CP CPdet 1 det 1 , 53HD
x C

x
d

C
x

d0 2 1 2( ) ( ˜ ) ( )[ ]

= + + +

´ + + +

-

-

 

 

C P C P C

C P C P C

1 tr tr

1 tr tr , 54

x x
d

x x
d

2 1 3 2

1 2 3 2

( )

( ˜ ˜ ˜ ) ( )

k kº = º =m m--g C g C2 e , 2 e . 55P
N

P
Nt t1( ) ˜ ( ) ( )

Notice that since in this case the expansion parameter C can be of order 1, the s-resummation
to equation (29) is important for avoiding large exponents in equation (28).

Appendix C. Simple examples

In the following we treat two examples which both illustrate the loop formula and its
problems.

We use

⎜ ⎟⎛
⎝

⎞
⎠s sG =  = 


G =  =

 


 1 1
1 1

, 1 i
i 1

, 56,1 1 ,2 2( ) ( )

G = G G G = G = G =    2 , 0, tr 2, det 0 57i i i i i i,
2

, , , , , ( )

     G G = -G G + G + G - 2 2 2 , 58,1 ,2 ,2 ,1 ,1 ,21 2 2 1 1 2
( )

  = G G + G -- - 2 2 , 59,2 ,1 ,12 1 1
( )

z k z k z z k= = =m m-e , e , , 602˜ ˜ ( )

mimicking a 2-dim lattice theory at finite μ. We use U(1) links to reduce the dimensionality
of W.

Notice that we have

 





 = G G = G G = G G =
l

l
l

l l
Î Î

U , , , det 0, 61i,l l

l

l

l

l
( )

    - = - g hdet 1 , 62
D,C l l l l

( ) ( )

see also equation (34). Since we are interested in chemical potential problems we keep z
fixed in this illustrations and consider various κ orders.
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C.1. Case (1)

We consider a Polyakov loop =P U U1 2

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

 
 

 
 

z z z z

z z z z

z z z z

z z z z

=

+ -

- +

+ -

- +

- -

- -

- -

- -

W

U U U U

U U U U

U U U U

U U U U

1 0

0 1

1 0

0 1

. 63

1 2
1

1 2
1

1 2
1

1 2
1

2 1
1

2 1
1

2 1
1

2 1
1

˜ ˜
˜ ˜

˜ ˜
˜ ˜

( )

Since the determinant is gauge invariant we use gauge transformations to put the Polyakov
loop on one link, figure C1 left plot:

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

 
 

 
 

z z z z
z z z z

z z z z
z z z z

=

+ -

- +

+ -

- +

- -

- -

W

P P

P P

P P

P P

1 0 1 1

0 1 1 1

1 1 1 0

1 1 0 1

. 64
1 1

1 1

˜ ˜
˜ ˜

˜ ˜
˜ ˜

( )

E.g., with  = -1 for apbc simple algebra gives

z z k z k= + + + = + +

= =

-

- - -

W P P P O

P U U P U U

det 1 4 4 16 1 4 ,

tr , tr 65

2 2 1 4 2 4

1 2
1

2
1

1
1

˜ ( )
( )

It can have real zeroes if -P P, 1 have large, negative real parts. The primary loops are
=P U U1 2 and =- - -P U U1

2
1

1
1 and the loop formula equation (29) with s-resumation gives

z z
z z k

= = + +

= + + +

z z+ + + -

-

-
W P P

P P

det e 1 4 1 4

1 4 4 16 66

P Pln 1 4 ln 1 4 2 2 1

2 2 1 4

2 2 1 ( )( ˜ )
˜ ( )

( ) ( ˜ )

which coincides with the exact result equation (65). Notice that without s-resummation the
higher orders do not cancel and we would have obtained wrong results already at 0th order in
κ:

z z
z k z

= = + +

+ + + +

z z+

- -

-


s P P

P P

1 : e 1 4 8

4 16 8 , 67

P P4 4 2 4 2

2 1 4 4 1 2

2 2 1

˜ ˜ ( ) ( )

˜

Figure C1. Case 1 and case 2, maximal gauge fixing,  = -1 1( ) for pbc (apbc). Inverse
links are not indicated on the plots.
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z z z k z

= +

= + - + + - +

z z z z- + -

- -

- -



s

P P P P

1 2 : e

1 4
80

3
4 16

80

3
. 68

P P P P4 8 4 8

2 6 3 2 1 4 6 1 3

2 4 2 2 1 4 1 2

˜ ˜ ( ) ( )

˜ ˜ ( )

C.2. Case (2)

We consider two short, connected Polyakov loops (a 2×2 lattice with pbc in 1 direction and
free b.c in the other). See figure B1, right plot and table C1 . Using again gauge transfor-
mations to a maximal gauge fixing we obtain figure C1, right plot and table C2 . We have
 = -1 1( ) for pbc(apbc).

Basic and primary loops of length up to l=6, with corresponding Dirac coefficients Ci

and multiplicities mi:



z
z

=
- - = = =
- - = = =

l
U U L C m

V V L C m

2 :
1 2 1 : , 4 , 2

3 4 3 : , 4 , 2, 69
1 2 1 1

2
1

1 2 2 2
2

2 ( )




k

k

z k

z k

=
- - - - = = - =

- - - - = = - =

- - - - = = =

- - - - = = =

- -

- -

-

-

l
S V S U L C m

S V S U L C m

S V S U L C m

S V S U L C m

4:
1 3 4 2 1 : , 4 , 4

2 4 3 1 2 : , 4 , 4

1 3 4 2 1 : , 4 , 4

2 4 3 1 2 : , 4 , 4, 70

1 1 2
1

1
1

3 3
4

3

2 2 1
1

2
1

4 4
4

4

1 1 2
1

2 5 5
2 2

5

2 2 1
1

1 6 6
2 2

6 ( )

z k

z k

z k

z k

z k

z k

=
- - - - - - = = - =

- - - - - - = = - =

- - - - - - = = - =

- - - - - - = = - =

- - - - - - = = - =

- - - - - - = = - =

-

-

-

-

-

-

l
S V S U U U L C m

S V S U U U L C m

S V V V S U L C m

S V V V S U L C m

S V V S U U L C m

S V V S U U L C m

6 :
1 3 4 2 1 2 1 : , 16 , 6

2 4 3 4 2 1 2 : , 16 , 6

1 3 4 3 4 2 1 : , 16 , 6

2 4 3 4 3 1 2 : , 16 , 6

1 3 4 3 1 2 1 : , 16 , 6

2 4 3 4 2 1 2 : , 16 , 6 71

1 1 2
1

2 1 2 7 7
4 2

7

2 2 1
1

1 2 1 8 8
4 2

8

1 1 2 1 2
1

2 9 9
4 2

9

2 2 1 2 1
1

1 10 10
4 2

10

1 1 2 1
1

1 2 11 11
4 2

11

2 2 1 2
1

2 1 12 12
4 2

12 ( )

(and their inverses4).
The loop formula gives:

= - -
=

¥
-W C L C Ldet 1 1 , 72

i
i i i i

1

1( ) ( ) ( )

where Li are primary loops, obtained by chaining together basic loops.
For calculations we can use the maximal gauge, setting = = =U V S 12 2 2 , see table C2.

Then = =L U L V,1 2 are the two straight Polyakov loops, -XVU 1 and X the two plaquettes
L L,3 4 and = = -L V X L U X,5 6

1 are basic decorated Polyakov loops and
= = = = = =- -L X V U L X U L X V L X U V L L U V, , , 0 ,7 8

1 2
9

2
1

1
11 12 are primary

decorated Polyakov loops obtained by chaining a basic straight Polyakov loop and a basic
decorated Polyakov loop. Notice that we can attach further straight Polyakov loops and obtain
primary loops of arbitrary length in order k2 but we stopped at length l=6 for this
illustration.

4 We thank Dr Elmar Bittner for writing the program to produce basic and primary loops.
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Since the lattice is even we take only even power of Q in evaluating equation (72). We shall
only consider loops up to length 6. To order 0 in κ we find:

   z z z z= + + +- -

n
Q

n
U

n
U

n
V

n
V

1

2

1
4

1
4

1
4

1
4 . 73n n n n n2 1 1( ) ( ˜ ) ( ) ( ˜ ) ( )

Notice that these basic loops are of lengths 2 , = =U U U V V V,1 2 1 2. The calculation was
performed up to order 16 , which is n2 max and one can check that up to this order there is no
deviation from the logarithm series. Assuming that the series continues as expected we find to
this order

   

z z z z
z z k

= - - - -
= - + + +

- -D U V U V

U V U V O

1 4 1 4 1 4 1 4

1 4 16 . 74

0 2 2 2 1 2 1

2 4 4

( )( )( ˜ )( ˜ )
( ) ( ) ( )

[ ]

A similar result follows from the decorated Polyakov loops which appear with a factor k2 (for
simplicity we no longer write the non-dominant inverse loops which have factors z̃ ):

 

z k z k

k z k

= - -

= - + +

-

-

D U X V X

V X U X O

1 4 1 4

1 4 . 75
1

2 2 2 1 2 2

2 2 1 4

( )( )
( ) ( ) ( )

[ ]

Finaly the non-basic primary loops -L L7 12 give

z k z k

z k z k
z k

k z k

= - -

´ - -
´ -

= - + + + + +

-

-

- -

D X V U X U

X V X U V

U V

U V X V U X U V X U X V O

1 16 1 16

1 16 1 16

1 16

1 16 2 . 76

2
2 4 2 4 2 1 2

4 2 2 4 2 1

4 2 2

2 4 1 1 2 2 4

( )( )
( )( )
( )

( )) ( ) ( )

[ ]

Table C1. Fermionic matrix W from figure B1, right plot.

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

 
 

 
 

 
 

 
 

z z z z k k

z z z z k k

z z z z k k

z z z z k k

k k z z z z

k k z z z z

k k z z z z

k k z z z z

+ - -

- +

+ - -

- +

+ -

- - +

+ -

- - +

- -

- -

- -

- -

- - - -

- - - -

- - - -

- - - -

U U U U S S

U U U U S S

U U U U S S

U U U U S S

S S V V V V

S S V V V V

S S V V V V

S S V V V V

1 0 i 0 0

0 1 i 0 0

1 0 0 0 i

0 1 0 0 i

i 0 0 1 0

i 0 0 0 1

0 0 i 1 0

0 0 i 0 1

1 2
1

1 2
1

1 1

1 2
1

1 2
1

1 1

2 1
1

2 1
1

2 2

2 1
1

2 1
1

2 2

1
1

1
1

1 2
1

1 2
1

1
1

1
1

1 2
1

1 2
1

2
1

2
1

2 1
1

2 1
1

2
1

2
1

2 1
1

2 1
1

˜ ˜
˜ ˜

˜ ˜
˜ ˜

˜ ˜
˜ ˜

˜ ˜
˜ ˜

Table C2. Maximal gauge k- = -W Q1 , see figure C1, right plot.

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

 
 

 
 

 
 

 
 

z z z z k k

z z z z k k

z z z z k k

z z z z k k

k k z z z z

k k z z z z

k k z z z z

k k z z z z

+ - -

- +

+ - -

- +

+ -

- - +

+ -

- - +

- -

- -

- -

- -

- -

- -

U U X X

U U X X

U U

U U

X X V V

X X V V

V V

V V

0 0 i 0 0

0 0 i 0 0

0 0 0 0 i

0 0 0 0 i

i 0 0 0 0

i 0 0 0 0

0 0 i 0 0

0 0 i 0 0

1 1

1 1

1 1

1 1

1 1

1 1

˜ ˜
˜ ˜

˜ ˜
˜ ˜

˜ ˜
˜ ˜

˜ ˜
˜ ˜
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We obtain thus the HD determinant to order k2 including all loops up to length 6, in
complete agreement with the exact determinant to this order

 




z z z k
z k

z z
z k z k

= - + + - +
´ - + + + +

= - + +
- + -

-

- -

-

D U V U V X V X U

U V X X X U X V

U V U V

V X U X U V

1 4 16 1 4

1 16 2

1 4 16

4 32 , 77

2 2 4 2 2 1

4 2 1 1 2 2

2 4

2 2 1 4 2

( ( ) )( ( ))
( ( ( ) ))

( )
( ) ( )

[ ]




z z
z k z k

= - + +
- + --

D U V U V

V X U X U V

1 4 16

4 32 . 78
exact
2 2 4

2 2 1 4 2

( )
( ) ( )

[ ]
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