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Abstract
In this paper we study certain integrability properties of the supersymmetric
sine-Gordon equation. We construct Lax pairs with their zero-curvature
representations which are equivalent to the supersymmetric sine-Gordon
equation. From the fermionic linear spectral problem, we derive coupled
sets of super Riccati equations and the auto-Bécklund transformation of the
supersymmetric sine-Gordon equation. In addition, a detailed description
of the associated Darboux transformation is presented and non-trivial
super multisoliton solutions are constructed. These integrability properties
allow us to provide new explicit geometric characterizations of the bosonic
supersymmetric version of the Sym-Tafel formula for the immersion of
surfaces in a Lie superalgebra. These characterizations are expressed only in
terms of the independent bosonic and fermionic variables.

Keywords: supersymmetric extension of the sine-Gordon equation,
supersymmetric versions of the Biacklund and Darboux transformations,
solitonic surfaces, supersymmetric version of the Sym-Tafel immersion
formula

1. Introduction

Over the past four decades, supersymmetric (SUSY) integrable models have generated a
great deal of interest in the literature of mathematical physics (see e.g. [1-12] and references
therein). Their special properties, such as the existence of a linear spectral problem (LSP), the
Bicklund and Darboux transformations and infinite sets of conserved currents, have allowed
the construction of analytical supersoliton solutions (e.g. [2, 13—18]). Some of these integrabil-
ity properties have been investigated for the case of the SUSY sine-Gordon equation, see e.g.
[2, 15-17, 19-24]. The approach proposed in this paper goes deeper into certain integrability
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properties of the SUSY sine-Gordon equation than [17, 24], especially the Darboux transfor-
mation of the SUSY sine-Gordon equation, which will later enable us to obtain new results
for the bosonic SUSY version of the Sym-Tafel formula for the immersion of surfaces in
Lie superalgebras. One should note that n-order Darboux transformations were investigated
in [15, 16] using Pfaffian solutions. The associated linear system uses 2 x 2 matrices which
are more compact than our 3 x 3 potential supermatrices. However, the linear system used in
these articles is not convenient for the bosonic SUSY version of the Sym—Tafel immersion
formula since this system uses differential matrix operators instead of supermatrices, as used
in our approach. In this paper, we discuss the links between different integrability properties
associated with the SUSY sine-Gordon equation. Furthermore, we provide explicit solutions
for the SUSY sine-Gordon equation and its LSP which allow us to investigate examples of
the bosonic SUSY version of the Sym-Tafel immersion formula through their geometric
characterization.

This paper is organized as follows. In section 2, we present some of the integrability prop-
erties of the SUSY sine-Gordon equation. We derive a fermionic LSP and we link it to dif-
ferent integrability properties, such as a bosonic version of the LSP, equivalent coupled sets
of super Riccati equations and the auto-Bécklund transformations of the SUSY sine-Gordon
equation. Moreover, we provide a detailed description of the Darboux transformations associ-
ated with the SUSY sine-Gordon equation. In section 3, we investigate two examples of the
bosonic SUSY version of the Sym-Tafel formula for immersion associated with the SUSY
sine-Gordon equation. These examples are obtained using the first iteration of the Darboux
transformation and are exclusively written in terms of the bosonic and fermionic independent
variables. A characterization of the geometry of each surface is provided.

2. Integrability aspects of the supersymmetric sine-Gordon equation

Throughout this paper, we follow the notation introduced in section 3 of the paper [25]. A
more detailed presentation of the theory of Grassmann algebras can be found in the books
[26-29] and references therein. In what follows we do not use the implicit notation for the
fermionic derivatives of a (m|n)-supermatrix M [26], e.g.
oM :( OpA OgB )
—0yC —0yD

Instead, we introduce a matrix E such that

OpA  OyB I, O
O (—89C —8,9D)’ ( 0 —In)’

where the square submatrices ,, and I, represent the identity matrices of dimension m and n,
respectively. The chain rule is assumed to be

d df du
—f(u) = ——.
dvf( ) du dv
According to [30], the SUSY sine-Gordon equation (SSGE),
D,D s =isins, )]
is considered for a bosonic superfield s = s(0", 67, x,, x_) with the covariant derivatives
9 — iHi—a

D, =2 :
<7 90% s 2
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where 07 are fermonic independent variables and x. are bosonic light-cone coordinates. The
fermionic derivatives D, have the properties

Dl =—id,. {DyD}=0, 3)

where {, -} stands for the anticommutator. The SSGE (1) can be obtained through the super
Euler-Lagrange equation,

0 0 0
— D D_ =0,
Os £t +( A(Dys) E) * ( O(D_s) E] )

with the Lagrangian density

L =coss — %D_;,_SD_S. &)

The SSGE (1) is known to be integrable in the sense of soliton theory [2, 17, 19-21, 24].
One can provide an infinite set of locally conserved quantities and a LSP under the form of a
differential linear matrix representation. One way to obtain a linearization of the SSGE (1) is
to consider the following problem for the wavefunction :

D.® = (J + Ke ™)@, D& = (MDs+Ny®, (6)

where 7, K, M, N are complex-valued matrices and then take the compatibility conditions of
® to be equivalent to the SSGE (1). The resulting algebraic constraints are

. . 1
iJ=[M,J], ik = [k, M], (TN} = —{K,N}, EM: (KN} @)
One solution to these constraints, which takes its values in the s[(3, C) Lie algebra, is

100i 1 0 0 O
JZEOOO,’C:EO 0 —i)
010 -1 0 O

i 00 0 0 —i
M=]|0 —i 0/, N=|0 0 i |
0 00 -11 0

To introduce the spectral parameter A in equations (6), as proposed in [31], we apply the Lie
point symmetry transformation of the SSGE (1),

®)

o=y, E=X, T =M2% =X, A=+en )

to the linear system, where p is any bosonic constant in the Grassmann algebra. One should
note that this scaling transformation does not leave the linear system (6) invariant. Hence, the
LSP of the SSGE (1) takes the form

Dy ®(\, s) = Ur(\, 5)P(N, 5) (10)

where )\ is the bosonic spectral parameter and U, are fermionic supermatrices taking values in
the s[(2|1, G) superalgebra, given by [17]

1 0 0 iels iD_s 0 —iv A
U=———=] 0 0 —ie ™) U=]| 0 -—iDs i) | 11)
’ 2 )‘ —is is (
—e " e 0 ENSNEND 0
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The wavefunction  is a (2]1)-supervector

(4
D=1p[  (~D*E = (1)) = (—1)leOt] (12)

X

such that either i, ¢ are bosonic superfields and y is a fermionic superfield, or v, ¢ are fermi-
onic superfields and x is a bosonic superfield.

The LSP can also be defined using an invertible wavefunction ¥ in the GL(2|1,G)
supergroup,

DV, 5) = Ur(A, $)P(A, 5). (13)
The compatibility condition of both LSPs (10) and (13), i.e.
10 0
D.U +DU,—{EU,EU} =0, E=]101 0} (14)
00 —1

are equivalent to the SSGE (1).

Moreover, a LSP can be described using the light-cone coordinate derivatives d,.. From the
property (3), we write the bosonic version of the LSP exclusively in terms of the wavefunction
U and the potential matrices Uy from the fermionic version of the LSP, i.e.

0.V = i(D U — (EUL*)V = V.U, (15)

where the bosonic supermatrices V. take the forms

1 -1, —i .
_ —__elis ———eD
3\ 3\ N
| -1 5 | -1
Vo=~ —e™¥ — ——e "D 2|1, G),
_—le’“D s _—lei“D s i (16)
NSNS Y A
05—\ A —iJ\D_s
V.= A —id, s — A —i/AD.s|€sl2]1,G).

JADs JAD.s —2A

The compatibility conditions of the LSP (15) correspond to the ‘classical’ version of the zero-
curvature conditions, i.e.

6X+V, - 8X7V+ + [V,, V+] = 09 (17)

which is satisfied whenever the SSGE (1) is satisfied.
To obtain coupled sets of super Riccati equations [20, 24], we consider the quantities

) = > 1
14 " q " (18)

where we take v, ¢ to be bosonic superfields and y to be a fermionic superfield. By differen-
tiating them, we get
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Dip = ——e g - ——eipg,
2JX NBY
Dp = —2iDs)p +ivVA(1 +p)g, (19)
together with
-1 . 1 .
Diq= 2\/Xe Y+ zﬁe”p,
Dg=~X(p—1)—iDs)yg, (20)

from which one can obtain an infinite set of locally conserved currents [20]. The compatibility
conditions of both sets of equations are satisfied whenever s is a solution of the SSGE (1).
Moreover, by setting

p = eI+, q—»fe‘%(”f), 1)

where fis a fermionic superfield, we obtain the auto-Bécklund transformations of the SSGE
[22, 24]

D, (s+75)= LCOS(S7§ ,

NB\ 2
D (s—3§)= Zﬁfcos(s—iz_f),
os= gl
Df:—mJXg%S;E) (22)

The compatibility conditions of these equations are satisfied whenever s and § are solutions
of the SSGE (1). One should note that the auto-Bédcklund transformation (22) of the SSGE
requires an additional fermionic function f due to the oddness of the derivatives D...

It is possible to construct n soliton solutions of the SSGE (1) from the Darboux transfor-
mation using one (trivial) solution of the SSGE together with n solutions of the associated
LSP (10) for n fixed spectral parameters A\, j =0, 1, ..., n — 1. One should note that Darboux
transformations do not ensure that the newly constructed solutions are linearly independent of
the previously constructed solutions. The first iteration of the Darboux transformation for the
SSGE (1) [15-17] (similarly to the classical case [32, 33]) is given by

. Yo
s[11=s—iln| == |, 23
(% (23)
®o . Xo
—Ao— Ai —1./ AN =
i1l "o ] Ty
si=[aml=| N D il | 24)
X1 % %o X;
,/)\0)\1' % )\0)\1' % _()\0 + )\j)
0 0
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D, Py s
7
®,[1] @, [1] s[1]
u[2] - D2 s[2]

Figure 1. Diagram describing how to obtain the (n + 1)-iterated solution generated
by Darboux transformations using one solution s of the SSGE (1) and n + 1 solutions
®; of the LSP (10) associated with the solution s for the fixed spectral parameters \;,
j=0,1,..n

where s is a solution of the SSGE (1), ¢;, (bj are bosonic solutions and X; is a fermionic solution
of the LSP (10) for the solution s and the fixed spectral parameter A = );. The new solution
®;[1] of the LSP is given for the system

D O[1] = AL (N, s[1DP[1]. j=12,3,.. (25)

One should note that the solution of the LSP (25) with the fixed parameter \y has been used
in order to construct the new solution. The index j = O for the first (or higher) iteration trans-
formation correspond to the trivial solution ® = 0. Therefore, the solution for the LSP with
A = )¢ cannot be used to obtain other new solutions.

In order to construct a higher iteration solution of the SSGE (1), we must ‘drop’ other solu-
tions of the LSP associated with s and ); for the lowest indices j. As an example, let us say
that we know a solution s of the SSGE and three solutions &, ®; and &, of the LSP associated
with the fixed-valued spectral parameters Ao, \; and \,, respectively. Hence, from ®; and &,
and dropping @y, we get respectively ®[1] and ®,[1]. To iterate once more, we can drop P[1]
to obtain ®,[2]. Moreover, from ®(, $[1]and $,[2], we can construct three new solutions s[1],
s[2] and s[3], respectively. The procedure can be applied n times using » fixed solutions of the
LSP and the associated solution of the SSGE (1) as described in figure 1.

The second Darboux transformation of the a solution s of the SSGE (1) is given by
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J20— s iln| 0ot A@lwom/xomoxl]. 06

A091%0 — NP1 + iy Ao XoXi

By repeating the Darboux transformation n times (n > 2), we obtain by induction the solu-
tion s[n] which takes the form

[ S0 RGP A )AL X,
| 02" PO A AL X,

s[n] =s—1iln }, when n is odd,

S (@Y PO M)A Xk, + 27 PO M) SXi X,
| 020" PO A AT X, + 27 PO M) 1’"xkxk

s[n] =s—1iln

when n is even,
27

where k; represents the set of n — 2m ordered indices and k, represents the set of 2m ordered
indices not in k;. The quantities Aab‘ o Xave.. and P(Ag, Ap, .. Aey Ag...) are given by

2 2 2

Al = def] Ve St S
Ny Ay Ach,
77[}11 wb 1/%
s g2

B = def 00 00 R
Aawa /\bwb >‘c¢c
¢a ¢b ¢C

Xabed... = \V >\a>\b)‘c/\d"' XaXbXcXd

P(Xg, Moy o3 Aoy Agee) = (=10 + A d + Ad)o O + A Xp + Ag)-eos
(28)

where P(...;...) has the following definition when it has no argument \; on one side or the
other of the semicolon
P(A; @) = 1= P(D; \t,), (29)

and « is the binary function

if ab...cd... are equivalent to an even number

of cyclic permutations of the ordered indices,
o= (30)
if ab...cd... are equivalent to an odd number

of cyclic permutations of the ordered indices.

In addition, we define Agz = 0.
As examples, we provide the first four Darboux transformations of a known solution s of

the SSGE (1):

1
s[1] =5 — 11n(Ag)
Ay
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1 .
s[2] = s — iln(M)

AS] + iXo ’

Abpz +iPo; My, A AKX + 1P(Aa; Aoy M)ALX o1 + 1PN Ao, M) AXo
Adpy +iPO0; My M) ARXi2 + iPO; Moy A)AZXo1 + IPOA; Aoy M) ATX o |

s[3] =5 — iln(

s[4] = 5 — iIn [(Af1o3 + 1PN, A M, M) AGXi2 + 1P(o, Aoz i A3) Ao X3
+ 1PNy Ais A2 A)AG X3 + PPNy Az Aoy A2)AL3X02 + 1PN, Ags Aoy \)A X3
+1iP(Xa, A3; Mos M)A Xo1 —(P(Now A Aoy A3) + P(Now Ao Aty Aa) + PN, Asi A Aa))Xo123)
1 (AG103 + 1PNoy Asi My M) AJsXin + iP(No, Aoz My M)A, Xi3
+iP(No, Ats Aoy A)AG 1 Xa3 + 1PNy Azi Ao M)A X 02 + 1P, Aa; Ao A)ALXos
+iP(a, As; Aoy MDA X o1 —(P(Mow Ais Aoy A3) + P(No, Aai A As) + P(Aoy Ass Aty M) Xo123)] -

3. Expilicit solutions used for the bosonic supersymmetric Sym-Tafel formula
for immersion

By considering the trivial solution of the SSGE (1),
s = 2k, keZ (€29)
the solution ® of the LSP for any invertible value of \; € G is given by

—bj igj . _ lb] _
— ot Aiab 070 e
’*(z@ 2y PN ]
——0

¥
. .,
4= c]-( L gy e +0]'b, (32)

TNy o

b; o )
(Qj+ 2—;\j9+— bje +1Qj9+9 ]e"l

forj=0, 1, 2,..., where
A+

n = 3y —2\x_

(33)
is a bosonic linear function of x and x_, g; is an arbitrary fermionic constant and bj, ¢; are
arbitrary bosonic constants. Since the solution (32) satisfies the LSP (10) for any value of \;,
it is possible to compute a high number of solutions using the Darboux transformations from
equation (27).

In the further examples, we will only consider two non-trivial solutions using the first
iteration of the Darboux transformations for the geometric characterization of the bosonic
SUSY version of the Sym-Tafel formula for immersion.

According to [25], we now present the bosonic SUSY Sym-Tafel formula for the immersion
of solitonic surfaces in Lie superalgebras.
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Proposition 1. Ler us assume that there exists a LSP of the form (13) associated with a
SUSY integrable systems of partial differential equations Q) = 0, where the fermionic potential
matrices Uy take values in the gl(m|n) Lie superalgebra and the wavefunction U takes value in
the GL(mm|n) Lie supergroup. Consider the bosonic infinitesimal deformations

Us = Uz + eBNONU: € gl(m|n), U = (I + ¢F) € GL(m|n), (34)

that preserve both the LSP (13) and the zero-curvature condition (14) for an arbitrary bosonic
Sunction B(X\) of \, where Oy is the derivative with respect to A and ¢ is a bosonic infinitesimal
parameter whose quadratic terms are neglected. Then, there exists an immersion bosonic
supermatrix I given by

F = BP0, € gl(m|n) (35)
which defines a two-dimensional surface in a Lie superalgebra whenever its tangent vectors

ED.F = B0V 'EO\ULY,  E— (’g o ) (36)

are linearly independent, where I, and I, are the identity matrices of dimension m and n,
respectively.

Using the super Killing form defined by the supertrace,
1 1
(A.B) = — sir (AB) =  tr (E**) " AB), (37)

we obtain that the metric coefficients are given by the relations [25]

8i = (BQVENUx, BNWU:),  gn = =8 = (BVERWU, BNEOLU) (38)

where i = 1, 2 and 1, 2 stand for 4+, — respectively, such that the first fundamental form is
given by

I=(d:)g +2dd g, + (d-) g (39)
According to [34], the fermionic differential forms d.. anticommute with each other,
{d+a d,} = 07 (40)

and represent the infinitesimal displacement in the direction of D.. The discriminant g of the
metric is given by

8= 8180 — 8181 = &g + (810)" (41)
The unit normal vector N satisfies the relations
(N,N) =1, (ED+F,N) = 0. (42)

The vector N can be written only in terms of the tangent vectors,

{ED.F,ED_F)

" ({ED,F,ED F), (ED.F,ED_F})"*’ “3)
assuming that the norm,
\{ED.F,ED_F}||= ({ED.F,ED F},{ED.F,ED F})'?, (44)
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is invertible. The coefficients of the second fundamental form are given by
bij = (DDiF,N) = (BNDNU; — { BNEOU,, EU;}, UN 1), (45)
where i, j = 1, 2. The indices 1, 2 stand for +, — respectively. The second fundamental form is
I = (d4)*bi1 + 2d1dbis + (d-)b. (46)

The Gaussian and mean curvatures are written respectively as

_ bubn+ (b12)? H— b118y; + bagyy + 2b12815
818n + (812)? 2(81182 + (812))

A first solution s[1] of the SSGE (1) is constructed using the first Darboux transformation
(23) for the solutions (31) and (32), where the constant b is sent to zero. The solution s;[1]
takes the form

" gy 24
si[1] = 2kr —iln| 1 — 190e™ i | 2
Co«/)\o

The associated solution ®; of the LSP for A = ) is obtained from the 1-Darboux transforma-
tions (24),

i[1] = [0\1 — Ao)er — L\/Ao)\lgogle%*"l] + l
c

0

(47)

aoe%@]. (48)

1 . 1
+ Xo)aie™ — iy Ao —ape™ |0
N 0)a N OCO_o ]
[—hu1 O\ + Xo)aie™ + 21)\3/2—16106’70] 0~ +[ [Z9 (O + o) “"“lewm] 06,

(&)

0

¢1[1] = |:()\1 — Xo)c1 — CLJ Aot gogleno+771] + [

—1 C1
Ao —aope™ [0F
2\/T 0 C()_O ]
[1@()\1 + Xo)ae™ — 21/\3/2 a aoe%] 0~ +[ / M+ A )ao_ e"0+’71:| 0vo-,

Co

xil1] = [—()\0 + Aae + 24 Aoh ﬂQof‘/""] (1+i0%67). (49)
co

The associated pseudo-Riemannian geometry taken from the bosonic SUSY version of the
Sym-Tafel immersion formula gives the following coefficients for the metric

2\
where the arbitrary function 3()) is taken to be 3 = 2. The coefficients b;; of the second
fundamental form are given by

&=z 82 =81 =1 8 = 2iA, (50)

bi1=by =0, by = —by = —C"”( - 0t + 2\/)\_09_} (51)
Co \/)\_0

The Gaussian curvature K = 1 implies that the surface can be classified as a constant positive

Gaussian curvature one, which would implies that it would be a sphere in comparison with the

classical geometry. However, the mean curvature cannot be computed since the discriminant

8 = 811822 — 8128 Vanishes.

10
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A second 1-Darboux transformation solution s,[1] is considered using the constraint gy = 0
on solution (31) and (32), which leads to the particular solution

-1
by by
e'lo cy — ———e'lo
20 ] (0 20 )

-2
Uo) b ffoM] (52)

s7[1] = 2km —iln [{co +

+ 2C({Co +

by
2 ) 2

The associated solution ®, of the LSP for A = A, is given by

-1
JA b
Gl =] her + Y2"Lem — Aol o + by el|lc; — b el co — bo e'lo
2 2N 2%

b
_|_ Cl —_ Lenl CO — 1\/7 0 7]0
2N 2 )\0

710]( bo_en ) —iVAb el
e co — e’
240

b
2%

b[) e'lo c|— Le"]l co—
2% 2N 2\/_

-1
\/le] ofl c; + bl e C()-l-&eno
2 22 2N 2%
b
+ A _ o _
-1, )
—la+ —— bo e’ lrbo‘”’"-i-l\/xbl
e 2] 3 ;
~2
b bo iy Aobo _
_ el + ull + e'lo | 0+ ,
(C° e ]( 2N ]( 2 ) 2 }

—1
b Al , by ) bob,
=] =+ M) —em 4+ [ 2L poeo] (2 — 20 g2 L WP |
xi[1] [ (Ao 1)2)\1 " 0 [Co o coCy 4\/—

-1
, — b} bob
" [()\0 FAE AN boem{cg - 4)(\)0 62%) (COCI - 4\/% %Mhﬂ "

Pl1] = [)\101 — e — )\({CO —

by o
Ao
-1
bo el lbl e
oo ) 2dn

e

(53)
The first fundamental form’s coefficients g; for the associated pseudo-Riemannian geom-
etry of the bosonic SUSY version of the Sym-Tafel immersion formula with B(\) = 2\ are
given by

1
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—1i
= — = 2i\
811 23\ 822
812 = — & = —icos(sz[1])
2 -1 2 2 209\ 2 2,2
= i C(2) _ ﬁe%zo 6(2) + ﬁe%zo ) c% _ b Co_boenogmf
(54
and the coefficients b;; of the second fundamental form are
b1 =by =0,
b1y = —by; = sin(sy[1])

2 -1 2 -2 2
. b cob b b C()b()
= 1[0(2) 0| Z0em [ d - o] [ 4 e |- e,

4\ o 4Xo 2 )
(55)
Both discriminants g = g;,8,, — 8128,; and b = by1bxy — bixby are equal to
-2
B2 2,2
sind(s,[1]) = —[cf — —Le2n| L20em
(56)

2 -3 2 2,2
+2i C% — &62770 C(2) + by &2 coby 2o+~
4)\0 4)\0 0

The Gaussian curvature K is equal to 1 and the mean curvature takes the non-trivial form

H = —icot(s,[1]),

2 2 -1
EGHO[C% — fTOezﬂo) — 2( 2 &ez"]o] Co—boe"IOGJFG*

€o

cobo 0 - 4o \/To (57)
+|c5 - &627]0 o+ ﬁe2770 —\//\70 e hhto~,
4\ 40 cobo

in terms of the bosonic quantities Ag,x.,x_ and 670~. By considering the case where
by = 24/ Ao co, we obtain that the body part of the mean curvature is simply given by

Hj, = sinh 7, (58)

4. Conclusions

In this paper, we study the links between some of the integrability properties associated with
the SSGE. First, we derive fermionic potential supermatrices in s[(2|1, G) which provide a
LSP whose zero-curvature condition corresponds to the SSGE. Using this LSP, we construct
an equivalent LSP in terms of bosonic derivatives instead of fermionic derivatives, which
require that the potential matrices be bosonic supermatrices in s((2|1, G). Moreover, we pro-
vide links between the fermionic LSP, coupled sets of super Riccati equations whose compat-
ibility condition is equivalent to the SSGE, and the associated auto-Bicklund transformation.
Furthermore, we provide a comprehensive description of the Darboux transformation associ-
ated with the SSGE. This Darboux transformation allows us to provide non-trivial multisoli-
ton solutions of the SSGE.
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The bosonic SUSY version of the Sym—Tafel formula for immersion is investigated through
examples for the SSGE. Using 1-Darboux transformation solutions, we are able to compute
two new examples of geometric characterizations of the associated surfaces immersed in the
Lie superalgebra gl(2|1, G) exclusively in terms of the fermionic and bosonic independent
variables. These two surfaces are linked with spheres in analogy with the classical differential
geometry since they have a positive constant Gaussian curvature, K = 1.

The subjects addressed in this paper can be extended in many directions. Among them, we
can study other SUSY integrable systems based on their integrability properties and evaluate
some examples of immersed surfaces in Lie superalgebras. Moreover, it would be interesting
to find an invertible wavefunction ¥ so that we could explicitly compute the deformed sur-
faces F, which are written in terms of the wavefunction W. From these surfaces, it should be
possible to graphically show the shape of the surfaces and see how their characteristics, such
as the metric and curvatures, manifest themselves.
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