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Abstract. Based on the first-order shear deflection and classical beam theory, the 
linear bending of functionally graded (FG) beams is analyzed by applying the 
differential quadrature method (DQM). First, using the principle of total potential 
energy, the governing equations of the FG beams subjected to a distributed lateral 
force are derived according to two different beam theories. To calculate the numerical 
solutions of static linear bending problem, the dimensionless boundary conditions and 
differential equation which are used to discretize by DQ method. Static deflection 
curves and load-central deflection curves is generated considering two different beam 
theories. The influences of the power law index, transverse shear deformation and the 
distributed lateral force on the linear bending of the FG beams under cinditions of the 
simply supported and the clamped-clamped boundaries are analytically investigated in 
detail. 

1.  Introduction 
A new type of composite materials which is called functionally graded materials (FGMs), are provided 
with smooth and continuous spatial changes of macroscopic characteristics, comprising density and 
elastic modulus. These parameters are achieved by controlling the volume fraction, size, and shape of 
the material components during manufacturing. 

For linear analyses, Sankar [1] brought forward an explicit solution for FG beams that considers 
static transverse loading to assume that the material properties obey an exponential law along 
thickness direction. Ma and Lee [2] solved an explicit, closed form solution for the typical nonlinearity 
static corresponding of FGMs beams in a in-plane thermal force. Zhong and Shang [3] presented an 
explicit 3D analysis for a FG piezoelectric rectangular plate that was simply grounded and sustained 
toward four borderlines. By applying the similarity of mathematics among the derived equations, the 
correspondence relationship of bending results of Timoshenko FG beams and those of the congruent 
EB beams were obtained by Li et al. [4]. The maximum deflections of S-S and C-C TBs in an 
uniformly distributed load were gained from this obtained equations, and results were found by the 
shooting method. Thai et al. [5] reported the effect of shear deflection and power law index on the 
bending of FG beams using another TBT for the bending of FGMs. Applying the Ritz method model 
for FG material beams, which was first proposed the physical neural surface and TBT, Zhang [6] 
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obtained the approximate solutions about nonlinearity bending. Using TBT, Ravikiran et al. [7] carried 
on the static problems of the FGM beams under ambient temperature. To obtain a proper 
representation of the constitutive matrix for the FGM beam, a convergence research is required to 
choose the number of layers along the thickness. Reza et al. [8] raised an improved couple stress 
theory to analyze small-scale FGM beams. Applying the Airy stress function, Ding [9] et al. obtained 
the exact solutions for anisotropic FGM beams. 

2.  Mathematical equation model 

2.1.  Material characteristics 
Take over a FG beam with a rectangular section (Fig. 1), which is composed of metals and ceramics. 
The material characteristics change continuously along the thickness h from the pure ceramic surfaces 
to the pure metal surfaces. For example, Young’s modulus E and the passion ratio v, can be shown as 
following: 

 ( ) C M C MP z P P P V                                                    (1) 

 

Figure 1. Geometry of FG beam and the material change of the thickness direction 

Where MV is the volume percentage of metal materials. According to below the function (Fig. 2), 

the equations are changed. 
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Figure 2. Curves of the volume fraction MV  and the power law index n  
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2.2.  The governing equations 

Table 1. Displacement field of the different theories 

Displacement CBT FBT 
( , )xU x z  ( )u x z  ( ) ( )u x z x  

( , )zU x z  ( )w x  ( )w x  

 
In Table 1, x is the longitudinal axial of FG material beam; ( , )xU x z and ( , )zU x z are the 

longitudinal and transverse displacements at any points of beam, respectively; ( )w x indicates the 

deflection of FG beam; ( )x  is the rotation angle of the section. 

Displacement and strain relations are provided as following: 

3

, , , ,2

4
( )

3
x x x xx x

z
u w z

h
                                                      (3) 

2

, ,2

4
( )xz x x

z
w w

h
                                                           (4) 

On the basis of Hooke’s law, we obtain the following displacement and stress relations: 

(z)x xE                                                                       (5) 

2(1 )
xz xz

E
 





                                                                  (6) 

2.2.1.  First-order shear deflection beam theory (FBT). The dimensionless equilibrium equations are 
given as follows: 

, 1 , 0U K                                                                     (7) 

, 2 , 3 , ,( ) 0U K K W W                                                              (8) 

, , 0qW K                                                                      (9) 

The non-dimension quantities in the above equations are defined by: 

2
11 11 44

1 2 32 2
11 4411 11

, , , , , , , q

B h D h A hx w l u l q
W U K K K K

l h h l B A hA l B l


        

 

2.2.2.  Classical beam theory (CBT) 

,

1

qV
W

V
                                                                    (10) 

The dimensionless quantities in the above equations are defined by 
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11 11 11

, , , , q

B Dx w u ql
W U V V

l h l A l B l B
        

2.3.  The weighting coefficients  
The DQM must discretize the definition domain into m  points. Along the definition domain, a 
weighted linear summation of all of the functional values in M points approximately expresses the 
derivatives of any point [11]. 

( ) ( )

1

( )
, 1, 2, ,

k m
k ki

i ij jk
j

d f x
f A f i m

dx 

   …                                            (11) 

Where m indicates the amount of grid points, A(k)
ij is the weighting coefficient for the kth derivative. 

2.4.  Selection of the sampling nodes 
The sampling points in the DQ representations are selected as shifted Chebyshev-Gauss-Lobatto 
points, which are given as follows: 

 11
1 cos ( 1, 2, )

2 1
i

i
x i m

m

   
    

   
……,                                         (12) 

2.5.  Discretization of the static equilibrium equations  
Linear summations substitute for the derivatives of equations, static equilibrium equations (Table 2) 
and boundary conditions (Table 3), which are then handled under the different beam theories as 
follows: 

Table 2. Discretization of the static equilibrium equations 

FBT 
1 1

1 2 , 3 3 ,
2 2

( ) 0
m m

i j j i i j j
j j

K K B K K A W 
 

 

     ; 
1 1

, ,
2 2

m m

i j j i j j q
j j

A B W K
 

 

     

CBT ,
1 1

m
q

i j j
j

V
D W

V

  

Table 3. The simply supported and the clamped-clamped boundary conditions 

C-C 0| 0   , 0| 0W    , 
1

1,
2

0
m

j j
j

A W




 , 1| 0   , 1| 0W    , 
1

,
2

0
m

m j j
j

A W




  

S-S 0| 0   , 0| 0W    , 1,
1

0
m

j j
j

B W


 , 1| 0   , 1| 0W    , ,
1

0
m

m j j
j

B W


  

3.  Numerical results and discussions  

3.1.  Numerical results of an Si3N4-SUS304 FG beam based on FBT and CBT 
For numerical solutions, we choose an Si3N4-SUS304 FG beam in a uniformly distributed load q, with 
a length of l=0.3m, a height of h=0.01m, a width of b=0.01m, and the number of nodes is m=11. The 

material properties: Si3N4 348.43GPaE  , SUS304 201.04GPaE  , SUS304 0.24  , SUS304 0.33  .  
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3.2.  Numerical results of an Si3N4-SUS304 FG beam based on FBT 

 

Figure 3. Deflection curves of a C-C FG beam with different power law indices and q=18KN/m. 

 

Figure 4. Central deflection-loading curves of a C-C FG beam with different power law indices. 

 

Figure 5. Deflection curves of an S-S FG beam with different power law indices and q=4KN/m. 
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Figure 6. Central deflection-loading curves of an S-S FG beam with different power law indices. 

4.  Conclusion 
In this article, based on first-order shear deflection beam theory, and classical beam theory, 
respectively, the static bending of FG beams exerted under the conditions of two different supporting 
boundaries is analytically investigated. The model of an FG beam subjected to a distributed lateral 
force with material properties is given, and it takes into account variations along the thickness 
dimension. These results reveal that the deflections of the beams by the first-order shear theory are 
always smaller than those created by the classical theory. In additional, an increase in the power law 
index leads to a drop in the deflection. Furthermore, viewed in trems of the deflection curves, the 
convergence of the deflection curves obtained by exerting a simply-supporting boundary is faster. The 
conclusions for the two theories differ slightly, with the numerical result of the classical theory being 
the smaller, and of the first-order shear theory being the bigger. This is due to the shear deformation in 
cross section being taken into consideration under the first-order shear theory, which makes the result 
more precise. 
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