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Abstract. In this paper, the aerodynamic model, machine model, converter model and control 
model of Doubly-Fed Induction Generator (DFIG) are introduced. The simulation model of 
DFIG system is established in ADPSS by a self-defined mathematics module. The simulation 
results show that the control target is achieved and the best speed of rotor can still be 
maintained under the change of wind speed. The constructed simulation model can accurately 
reflect the electromagnetic dynamic characteristics of the DIFG wind power generation system 
and provide an effective simulation platform for the control system design and analysis of the 
DIFG. 

1. Introduction 
As a clean and renewable energy source, wind energy has great potential for development. Therefore, 
wind energy is increasingly valued by countries around the world. At present, many major developed 
and developing countries in the world have already made great efforts to develop renewable energy 
such as wind power as an important means to cope with the increasingly severe energy crisis and 
challenges of climate change. With the rapid development of wind power technology and equipment in 
the world, wind power has become the renewable energy technology with the most mature technology, 
the most extensive development conditions and commercial development prospects. Under the 
guidance of the national renewable energy strategy, China's wind power has achieved rapid 
development. By 2017, the cumulative grid capacity of wind power in China will be 160 million 
kilowatts. Compared with the fixed-speed wind generator, the speed of DFIG is adjustable, which can 
improve the efficiency of wind energy absorption and realize the decoupling control of active and 
reactive power [1-2]. However, the structure of DFIG is more complex. As an important research 
method, the modelling of DFIG is particularly important [3-6]. In this paper, based on the 
mathematical model of the DFIG, the DFIG model is established by the self-defined mathematical 
function in ADPSS and the effectiveness of the DFIG control system is verified by simulation. 

2. Model and control strategy of DFIG 
The model of DFIG system includes an aerodynamic model, a machine model, a converter model, a 
control model, etc. FIG. 1 is a schematic diagram of a DFIG system. 

http://creativecommons.org/licenses/by/3.0
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Fig. 1 A DFIG system schematic 

2.1． Aerodynamic model 
From aerodynamics, the mechanical power generated by the wind turbine [7-8] is: 

       
( )2 31 ,

2m p

r

P R v C

R
v

ρπ λ β

ωλ

 =

 =


                             (1)            

Where: ρ is the density of air. R is the radius of turbine. ωr is the speed of rotor. v is the speed of 
wind. λ is tip-speed ratio. β is the pitch angle. Cp is capacity utilization factor. Pm is the mechanical 
power of shaft. 

2.2． Model of the doubly fed induction machine 
The electromagnetic transient voltage model of the doubly-fed induction machine in the dq 
coordinate system can be written by the voltage and flux equation of the dq axis using Parker 
transform: 
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                (2) 

The active power and reactive power absorbed by the stator are: 

3 ( )
2
3 ( )
2
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P u i u i
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 = +

 = −
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                             (3) 

2.3． Converter control model 
With stator flux orientation, the stator flux vector lags behind the stator terminal voltage vector by 90 
degrees, from which the flux observer can be constructed. The active power and reactive power 

absorbed by the stator side are respectively controlled by the torque component qri  and the excitation 

component dri  of the rotor current. By controlling qri  and dri , the active and reactive power of the 
machine can be instantaneously controlled. In practice, the following approximate formula is often 
used because the flux cannot be measured accurately: 
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The entire system is a double closed-loop control structure. The outer ring is a power control loop 
and the inner loop is a current control loop. The stator active power Ps and the stator reactive power 
Qs are calculated from the detected stator and rotor voltages and currents and they are compared with 
the given values P*s and Q* of the stator active and reactive power. The given value of rotor current 
i*qr and i*dr is generated after PI regulation. The given values i*qr  and i*dr are compared with the 
actual feedback iqr and idr and fed to the PI regulator to obtain the control voltages on the d and q 
axes. After reversed Park transformation, the control voltage component in the three-phase coordinate 
system can be obtained. 
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Fig. 2 Control loops of active power and reactive power on rotor 

side 
For the grid-side converter, it is specified that the current flowing into the converter is positive, and 

the following circuit equation holds: 

ag g ag g ag agc
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                              (5) 

After the Parker transformation, the dq axis equation can be obtained: 

0
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By using voltage-oriented control dg su U=
，

0qgu =
，the power equation is： 

3
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3
2
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
 = −
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                                       (7) 

The active power Pg and reactive power Qg exchanged between the grid-side converter and the 
grid are controlled by idg and iqg, respectively, and the DC voltage can be controlled by the active 
current idg [9-10]. The reactive current iqg controls the AC side voltage and the phase of current(ie 
reactive power). Therefore, for the grid-side converter, the control target of the active power is to keep 
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the DC voltage constant; the control target of the reactive power is to send the specified value of 
reactive power. 
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Fig. 3 Grid-side active power control loop and reactive power 

control loop 

3. Design of double closed-loop control system  
The entire system is a double closed-loop control structure. The outer loop is a power control loop and 
the inner loop is a current control loop. Rewrite the simplified rotor circuit equation into the standard 
structure of the dynamic equation: 

2 2
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m m
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It can be seen from the above equation that the d and q axis components of the rotor current can be 
controlled by the d and q axis components of the rotor voltage respectively. But the effects of the 
coupling and the stator flux interfere with the rotor voltage control of the rotor current. It can be 
treated as a disturbance of the system. 

Closed-loop has the ability to eliminate the disturbance in the ring, but the disturbance will reduce 
the dynamic and static characteristics of the current closed-loop system. In this case, the disturbance 

needs to be compensated. druΔ  and qruΔ  are the rotor side compensation voltages of d and q axis, 
as shown below: 
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Let 
'
dr dr dru u u= + Δ , 

'
qr qr qru u u= + Δ , Leakage coefficient 

2

1 m

s r

L
L L
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. Then the rotor circuit 

equation can be written as: 
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The corresponding transfer function is: 
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3.1 Inner ring PI parameters of active power loop 
For the current inner loop: The closed loop transfer function of the current and current reference 
values is: 

4
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                       (12) 

To obtain a Type 1 closed-loop transfer function and to eliminate the steady-state error under the 
unit step response, equation (13) must hold: 
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Compare the two equations above:  
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Thus the PI parameters are： 
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                              (15) 

3.2 Outer ring PI parameters of active power loop 
The designed inner current loop system is regarded as part of the outer power loop and the closed loop 
transfer function of the outer power loop power and power reference value is: 
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To get 
3

*
3

s

s

P
P p

α
α

=
+ , we have: 

 3 3 4

3 3

3/ / ( )
2

3/ ( )
2

m
P s

s

m
I s

s

LK U
L

LK U
L

α α

α

 = −

 = −


                       (17) 

3.3 Inner current ring and outer power ring PI parameters of reactive power loop 
The inner current loop of the reactive loop is the same as the inner current loop of the active loop, so 
there is: 
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Use the same method as the active loop, we get： 
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4. Simulation verification 

4.1. Simulation system 
Simulation systems mainly include DFIG, converters, and wind turbines (implemented in the UD). 
The DFIG system is connected to the infinite bus. 

Figure 4 Simulation System 

DFIG parameters ：radius of turbine R=4.3m，rated power Pn=15kW, DC side rated voltage V 
dc=1000, Rated line to neutral voltage U N=380V，DC capacitor C=2000uF，line reactor Lg=0.005H, 
rated frequency f=50Hz, number of pole pairs p＝3，moment of inertia J g=0.39kgm2，stator resistance 
R1=0.0379Ω，Stator leakage inductance L1=0.0011H，rotor resistance R2=0.031Ω, rotor leakage 
inductance L2=0.0022H，mutual inductance Lm=0.0427H. 

4.2 Control parameter calculation 
The outer loop system has no steady state errors and the rise time is no more than 0.02 s. For a 

first-order transfer function of the form 

1
1sG

Ts
=

+ , the formula for obtaining the rise time of the 
step response according to the first-order system 2.20rt T= . For inner loop control parameters, there 
is 0.002 2.20* *(1 20%)T= + , which is 7.5758e-004T = ，corresponding closed-loop poles a＝1320. For 
outer loop control parameter 7.5758e-003T = , corresponding closed-loop poles a＝132. 

Table 1. PI Parameters of Current Loop and Power Loop  

Circuit 

Inner 
current loop 

KP 
parameters 

Inner 
current 
loop KI 

parameters 

Outer 
power loop 

KP 
parameters 

Outer power 
loop KI 

parameters 

Rotor-side converter active power 4.3206 41.448 -0.0002204 -0.2909 
Rotor-side converter reactive power 4.3206 41.448 -0.0002204 -0.2909 

Grid-side converter active power 6.6 0 0.0002836 0.03744 
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Grid-side converter reactive power 6.6 0 -0.0002148 -0.2836 
 
 
 

4.3. Time domain simulation 

4.3.1. Simulation Experiment 1: Step Response 
The following 4 step response simulation are performed: 

1. Step response test of the DC side voltage: the reference value of the DC side voltage is 
stepped from 1000V to 1050V at 5s. 

2. Reactive power step response test of the grid-side converter: the reference value of reactive 
power is stepped from 0Var to 1000Var at 5s.  

3. Reactive power step response test on the stator side of the motor: the reference value of 
reactive power is stepped from 0Var to 1000Var at 5s.  

4. The active power step response test on the stator side of the motor: the reference value of 
active power is stepped from -4500Var to -4800Var at 5s.  

From the simulation test of the four control loops, it can be seen that the step response of the 
reference value meets the requirements of the controller design, and the closed-loop response 
performance of the controller is good. 

 

 

 
Fig. 5 DC voltage step response curve  Fig. 6 Reactive power step response curve at 

the grid side 

 

 

 

Fig. 7 Stator side reactive power step 
response curve 

 Fig. 8 Active power step response curve on the 
stator side 
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4.3.2. Simulation Experiment 2: Maximum Wind Energy Tracking 
The maximum tracking simulation of wind energy [8-9] was verified. The step change of the wind 
speed was set. The wind speed was stepped from 6.5 m/s to 8.5 m/s at 5 s. Stator current curve of 
phase a, rotor current curve of phase a, slip rate curve, stator power tracking reference value change 
curve, utilization coefficient Cp curve and output power of the DFIG were obtained through 
simulation. 

At the moment of wind speed change, the speed of rotor cannot suddenly change and lead to a 
decrease in Cp. It can be seen that the Psref will decrease first from the maximum wind energy 
tracking formula. At this point, the utilization factor is reduced but the mechanical torque is greater 
than the electromagnetic torque and the unit is accelerated due to the increase of wind speed. After 
about 1 s a new steady state is reached and Cp is still the maximum value. At this time, the 
corresponding unit slip ratio is s=-0.177230, which is very close to the theoretical value s=-0.1780. It 
can be seen from the results that the control strategy used achieves the goal of maximum wind energy 
tracking and can ensure stable economic operation. 

 

 

 
Fig. 9 DFIG stator current of phase a  Fig. 10 DFIG rotor current of phase a 

 

 

 
Fig. 11 Slip curve of DFIG  Fig.12 Curve of stator reference power tracking 

0 5 10 15 20-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

t

ia

0 5 10 15 20
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

t

ira

0 5 10 15 20
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

t

s

0 5 10 15 20
-8000

-7500

-7000

-6500

-6000

-5500

-5000

-4500

-4000

-3500

t

P

Ps
Psref



9

1234567890 ‘’“”

GBEM IOP Publishing

IOP Conf. Series: Earth and Environmental Science 186 (2018) 012003  doi :10.1088/1755-1315/186/5/012003

 

 

 
Fig. 13 Curve of utilization coefficient Cp  Fig. 14 Output power of DFIG 

5. CONCLUSION 
The above-mentioned DFIG model and control strategy are verified in ADPSS. The result shows 
that the control target is achieved and the rotor can still be at the optimum rotation speed under the 
change of wind speed. The model can accurately reflect the electromagnetic dynamic 
characteristics of the DFIG system and provide an effective simulation platform for the control 
design and analysis and calculation of DFIG. 
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