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Abstract.In order to study the effect of interface slip and shear deformation on the natural 
vibration of composite box girders with corrugated webs (CBBCW), based on the Hamilton 
principle, the effects of the slip, shear deformation and moment of inertia of CBBCW have 
been investigated. Further, the flexural vibration differential equations and natural boundary 
conditions of the CBBCW have been deduced. The formula for the flexural natural vibration 
frequency of CBBCW has been developed. The influencing rule of the interface slip stiffness 
and web shear deformation on the flexural natural vibration frequency of the CBBCW has been 
analyzed. The results of this study show that the analytical results are in good agreement with 
the results of the ANSYS finite element calculation, and some significant conclusions can be 
applied to the engineering design. The interface slip stiffness has some effect on the flexural 
natural vibration frequency of the CBBCW, and the maximum interface slip effect is up to 
13.7%. The shear deformation has a significant effect on the natural vibration properties of the 
CBBCW, and the shear deformation effect increases significantly with the increase of the order 
of flexural natural vibration frequency. The formula has been developed further as compared 
with the earlier developed calculation theory for the flexural natural vibration of CBBCW. It 
can also provide a reference for future study of dynamic characteristics of CBBCW. 

1.  Introduction 
The composite box girder with corrugated webs (CBBCW) is composed of concrete top slab, steel 
bottom slab and steel corrugated webs. Compared with the traditional steel-concrete composite beam, 
CBBCW has the following advantages: the corrugated webs has low axial stiffness and can greatly 
improve the efficiency of the applied prestress and reduce the shrinkage and creep effects of the 
concrete slabs. The corrugated web has a large out-of-plane stiffness and high shear buckling 
resistance. Moreover, it has a high local bearing capacity and anti-fatigue performance. In recent years, 
CBBCW has been widely used in the construction of buildings, roads, railways and urban rail transit 
[1-4]. 

Using the computer program ABAQUS, Elgaaly M et al.[5] performed a failure analysis of the 
beams with corrugated webs under shear. They found that the failure was due to the buckling of the 
webs. By carrying out elastic bifurcation buckling analyses using ABAQUS, Hassanein et al.[6, 7] 
presented the critical shear buckling stress of the corrugated webs of tapered bridge girders with steel 
corrugated webs, where the webs in different typologies of tapered girders with steel corrugated webs 
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were considered. Leblouba M [8] performed a series of three-point load tests on five shear-critical 
trapezoidal corrugated web beams. All the tested beams were observed to have a residual strength that 
was about half of their ultimate load carrying capacity regardless of the shear buckling mode. 
Experimental and theoretical studies on the shear buckling characteristics and the shear strength of 
trapezoidal corrugated steel webs had been conducted by Barakat S et al.[9], Leblouba M et al[10], 
Sause R and Braxtan T N[11] and Nie J et al. [12]. Based on these studies, the analytical solutions for 
the elastic local and global buckling strengths have been deduced and some formulae for predicting the 
shear strength have also been developed. Elamary A et al. [13] conducted an experimental study to 
investigate the effect of a top steel flange on the failure mechanism of a steel-concrete composite beam 
with a corrugated web under bending. Zhou M et al.[14] conducted experimental and theoretical 
studies on the deformation of a non-prismatic scaled model with corrugated steel webs to quantify the 
proportional relationship between the bending deformation and shear deformation. He J et al.[15-17] 
tested seven steel and composite I-girders with corrugated webs to investigate the shear performance. 
In the tests, the parameters such as the thickness of steel web and shear connection degree between the 
steel web and encased concrete were examined. Through experimental and analytical studies, Nie J et 
al.[18] investigated the behavior of simply supported prestressed steel–concrete composite beams. 
They found that a partial composite design would result in a bigger interface slip at the steel-concrete 
interface. Eventually, this slip could lead to a bigger deflection. Even with a full composite design, the 
calculated deflection ignoring the interface slip was smaller than the experimental measured deflection. 
Further, in some cases (e.g. for steel-concrete composite beams with reduced span-to-depth ratio[19, 
20]), it might not be appropriate to neglect the shear deformation in the beams, such as the Euler–
Bernoulli beams (i.e. beams with infinite shear stiffness). Xu and Wu[21, 22] developed a new plane 
stress model of the composite steel-concrete beams with interlayer slips. Their study showed that the 
one-dimensional theory underestimated the deflection of the steel-concrete composite beams due to 
neglecting the shear deformation. Therefore, the natural vibration characteristics of steel-concrete 
composite beams were influenced by both effects of the shear deformation and the interface slip[23-
26]. 

Zhou W et al.[27] derived and solved the flexural vibration equilibrium differential equations of the 
steel-concrete composite beams by taking the shear deformation and the interface slip into 
consideration. They found that effect of the interface slip on the flexural natural frequencies of the low 
mode orders was significant. Chen X et al.[28] developed a sandwich beam model for predicting the 
flexural vibration behavior of bridges with corrugated steel webs. In this model, the presence of 
diaphragms and interaction between the web shear deformation and flange local bending were 
considered. They found that the flexural natural frequencies and mode shapes obtained from the 
sandwich beam model and the Timoshenko models were basically the same. Based on the preceding 
literature review, it could be seen that there are only a few studies on the flexural natural vibration of 
CBBCW with comprehensive consideration of the shear deformation, interface slip and longitudinal 
inertia of motion.  

In this study, based on the Hamilton principle, the effects of numerous factors, such as the interface 
slip, shear deformation, and moment of inertia of CBBCW on flexural natural vibration of the 
CBBCW have been investigated. Further, the governing differential equations and the natural 
boundary conditions of CBBCW have been deduced, and an analytical calculation method for the 
natural vibration characteristics of CBBCW considering the effects of shear deformation and 
interfacial slip has been developed. Finally, a number of examples of different boundary conditions 
and shear connection degrees have been used to compare the results of the analytic solution with those 
of the ANSYS finite element analysis. 

2.  Basic assumptions 
The cross-sectional dimensions and coordinate system of a CBBCW are shown in Figure 1, and the 
longitudinal section is shown in Figure 2. To simplify the calculations, based on the characteristics of 
the CBBCW, the following assumptions have been made. 
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Figure 1. Cross-sectional dimensions of CBBCW and coordinate system 

The longitudinal displacement of the CBBCW cross-section is superimposed by the longitudinal 
displacement based on the plane section assumption and the relative longitudinal slip caused by the 
flexibility of the shear connectors, whose expression is 
 ( ) ( ) ( ) ( )xi c t, , , , , 1,2u x y z t k x t z z x t iξ θ= − − =     (1) 
 ( ) ( ) ( ) ( )xi s s, , , , , 3,4u x y z t k x t z z x t iξ θ= − − =    (2) 

From the literature [29, 30], we have 
 0c sk A A= −     (3) 
 ( )0s ck A nA=    (4) 
where θ  is the cross-section rotation of the CBBCW; 12b , 2b , 32b , 4b , *

4b  are the widths of the top 
concrete slab, cantilever slab and steel beam bottom plate, height of corrugated web, and width of the 
steel beam top flange, respectively; 1t , 2t , 3t , wt , *

4t  are the thicknesses of the top concrete slab, 
cantilever slab, steel beam bottom plate, corrugated web and steel beam top flange, respectively; tz , 

bz  and sz  are the coordinates in z-direction of centroids of the concrete slab, steel beam bottom plate 
and steel beam; s cn E E=  where sE  is the elastic modulus of the steel beam, and cE  is the elastic 
modulus of the concrete slab; 1 1 12A b t= ; 2 2 22A b t= ; 3 3 32A b t= ; 4 4 w2A b t= ; 4 4 42A b t∗ ∗ ∗= ; 

( )0 1 2 3 4A A A n A A∗= + + + ; 1 2cA A A= +  which is the cross-sectional area of the concrete slab, 

3 4sA A A∗= +  which is the effective area of the steel beam cross-section, ( ),x tξ  is the longitudinal 
displacement difference between the concrete slab and the steel beam centroids. 

  
Figure 2. Longitudinal section of CBBCW 

 
The vertical compressive deformation of the concrete slab and steel beam are small and negligible. 

The relative longitudinal slip between the slab and the beam ( ),x tζ  can be determined from Eqs.(1)-
(2) as follows: 
 ( ), c sx t h h hζ ξ θ θ ξ θ= + + = +    (5) 
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where ch and sh  are the distances from the centroids of concrete slab and steel beam to the interface, 
respectively. Further, c sh h h= + . 

If the linear elastic constitutive relationship of the concrete, steel and shear connectors is 
introduced, the shear stresses of the CBBCW shear connectors can be calculated using the following 
equations [18, 31]: 
 ( ) ( ) ( ), ,sl slx t k x t k hς ζ ξ θ= = +    (6) 
 ( )u s s s sV A f rl Ln=     (7) 
 1 s u0.66k n V=     (8) 
 sl 1 sk k l=     (9) 
where uV  is the ultimate bearing capacity of a single stud; L  is the span of the composite beam; r  is 
the shear connector degree; sf  is the yield strength of the studs; 1k  is the slip stiffness of a single stud; 

sn  is the number of studs at each horizontal row; slk  is the interface slip stiffness between the concrete 
slab and the steel beam; and l  is the longitudinal spacing between the studs. 

Since the axial deformation stiffness of the corrugated web is only a few hundredths or even a few 
thousandths of the axial deformation stiffness of a flat web of the same thickness, for simpler 
calculations, the axial deformation stiffness of the corrugated web has been neglected, i.e. the 
equivalent axial elastic modulus of the corrugated web has been taken as zero[32]. 

3.  Governing differential equations and solution 

3.1.  Strain and stress expressions at each point 
According to the longitudinal displacement expressions (Eqs. (1)-(5)), the strain expression at each 
point of the CBBCW cross-section is 

 ( ) 1,2xi c tk z z i
x x
ξ θε ∂ ∂= − − =

∂ ∂
   (10) 

 ( )- 3,4xi s sk z z i
x x
ξ θε ∂ ∂= − =

∂ ∂
  (11) 

 xz
w
x

γ θ∂= −
∂

   (12) 

where ( )1,2,3,4i iε =  are longitudinal normal strains of the top slab, cantilever slab and bottom slab, 
respectively; xzγ  is the shear strain of the corrugated web; and w  is the vertical deflection of the 
CBBCW. 

The stress at each point of the CBBCW cross-section is 

 ( ) 1,2xi c c tE k z z i
x x
ξ θσ ∂ ∂ = − − = ∂ ∂ 

    (13) 

 ( )- 3xi s s sE k z z i
x x
ξ θσ ∂ ∂ = − = ∂ ∂ 

   (14) 

 ( )4 - 0x e s sE k z z
x x
ξ θσ ∂ ∂ = − = ∂ ∂ 

   (15) 

 e ( )xz
wG
x

τ θ∂= −
∂

   (16) 

where eG  is the equivalent shear modulus of the the corrugated web; eE  is the equivalent axial elastic 
modulus of the corrugated web (i.e. e 0E = ); (i 1,2,3)xiσ =  are the longitudinal normal stresses of the 
concrete top slab, cantilever slab and bottom slab, respectively; and xzτ  is the shear stress of the 
corrugated web. 
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3.2.  Equivalent shear modulus of the corrugated web 
The longitudinal unit cross-section of the corrugated web is shown in Figure 3. The equivalent shear 
modulus of the corrugated web is smaller than that of the flat web, and its equivalent shear modulus 
can be calculated using the following equation [33]: 

 s sec
w w

e
w w w

b dG G
b d θ

+
=

+    (17) 

where sG  is the elastic modulus of steel; as shown in Figure 3, wh  is the wave height of the corrugated 
web; wb , wd  and 1wb  are the length of the straight section of the corrugated web, the projection length 
of the inclined plate section on the horizontal line and the length of the inclined plate section, 
respectively; and wθ  is the bevel angle of corrugated web. 

b w1

θw tw

bw dw dwbw
lw

h w

 
Figure 3. A cross-section of longitudinal unit of corrugated web 

3.3.  Flexural vibration differential equations and natural boundary conditions of CBBCW 
The strain energy of the CBBCW is 

 ( )
4

1

1 d
2 i

xi xi xyi xyi xzi xziL A
i

V r r dA xσ ε τ τ ςζ
=

 = + + + 
 
    (18)  

Substituting Eqs. (5)-(16) into Eq. (18) gives 

 ( )22 2
e 4

1= 2 d
2 L

V D J I G A w xξ ξ θ θ ςζ θ ′ ′ ′ ′ ′− + + + −    (19) 

where “ ⋅ ” and “ ' ” represent the partial derivatives with respect to time t  and coordinate x , 
respectively. 2 2

4* 3( )c c c s sD E k A E k A A= + + ; c c c s s sJ k E J k E J= + ; c c s sI E I E I= + ; ( )
c

c tA
J z z dA= − ; 

( )
4* 3

s sA A
J z z dA

+
= − ; ( )2

c
c tA

I z z dA= − ; and ( )
4* 3

2

s sA A
I z z dA

+
= − . 

As shown in Figure 3, the mass of a longitudinal unit of the corrugated web is: 
 4 1 42( )w w w w sm b t b t b ρ= +    (20) 

According to the principle of equivalent mass, the equivalent thickness of the corrugated web is: 
 ( )4 4weq w st m l b ρ=    (21) 

After considering the effect of moment of inertia, the total kinetic energy of the CBBCW can be 
expressed as 

 
i

4
2 2

i i
1

1 1
2 2L L A

i
T mw dx u dAdxρ

=

= +        (22) 

where ( )c c s s eqm A A Aρ ρ= + + ; 1 2 cρ ρ ρ= = ; *
3 4 4 eq sρ ρ ρ ρ ρ= = = = ; cρ  is the density of concrete; sρ  

is the density of steel; and 4eq weqA t b=  which is the equivalent cross-sectional area of the corrugated 
web. 

Substituting Eqs. (5)-(16) into Eq. (22) gives 

 ( )2 2 2
1 1 1

1 12
2 2L L

T D J I dx mw dxξ ξθ θ= − + +         (23) 
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where 2 2
1 4* 4 3( )c c c s sD k A k A A Aρ ρ= + + + ; 1 c c c s s sJ k J k Jρ ρ= + ; 1 c c s sI I Iρ ρ= + ; 

( )
4* 4 3

s sA A A
J z z dA

+ +
= − ; ( )

4* 4 3

2
s sA A A

I z z dA
+ +

= − . 

According to the Hamilton principle, i.e. ( )1

0
0

t

t
T V dtδ − = , which can derive the flexural vibration 

differential equations and the natural boundary conditions of the CBBCW, as follows[34]: 
 1 1 0slD J k D Jξ θ ζ ξ θ′′ ′′− − − + =          (24) 
 ( )1 4 0sG A w mwθ′′ ′− − =          (25) 
 ( )1 1 1 4 0s slJ I G A w J I k hξ θ θ ξ θ ζ′ ′′ ′′− + − − + − =       (26) 

 0
( ) 0LD Jξ θ δξ′ ′− =     (27) 

 ( )1 4 0
0

L
sG A w wθ δ′ − =   (28) 

 0
( ) 0LJ Iξ θ δθ′ ′− + =   (29) 

3.4.  Solution of flexural natural vibration frequencies of CBBCW 
Let 
 ( ) ( ) ( )1, sinx t x tξ ξ ω ϕ= +     (30) 
 ( ) ( ) ( )1, sinw x t w x tω ϕ= +    (31) 
 ( ) ( ) ( )1, sinx t x tθ θ ω ϕ= +    (32) 

 
k

k
kx

λ ∂=
∂

   (33) 

Substituting Eqs. (30)-(33) into Eqs. (24)-(26) gives 
 2 2 2 2

1 1 1 1( ) ( ) 0sl slD k D J J k hλ ω ξ λ ω θ− + + − − − =    (34) 
 2 2

1 4 1 1 4 1( ) 0s sG A m w G Aλ ω λθ+ − =    (35) 

 ( ) ( )2 2 2 2 2
1 1 1 4 1 1 1 4 1 0sl s s slJ J k h G A w I G A I k hω λ ξ λ ω λ θ− − − + + − + − =    (36) 

The eigen equations correspond to Eqs. (34)-(36) can be shown as follows: 

 

2 2 2 2
1 1

2 2
1 4 1 4

2 2 2 2 2
1 1 4 1 1 4

0
0 0
sl sl

s s

sl s s sl

D k D J J k h
G A m G A

J J k h G A I G A I k h

λ ω λ ω
λ ω λ

ω λ λ ω λ

− + − − −
+ − =

− − − − + −
    (37) 

where  denotes the determinant of a matrix. 
The solution of the flexural vibration differential equations can be expressed as: 

  ( )
6

1 1
1

expi i i
i

a xξ β λ
=

=   (38) 

 ( )
6

1 2
1

expi i i
i

w a xβ λ
=

=   (39) 

 ( )
6

1 3
1

expi i i
i

a xθ β λ
=

=    (40) 

 
2 2

1
1 2 2

1

( ) , 1,2,...,6
( )

sl
i

sl

J J k h i
D k D

λ ωβ
λ ω

− − − −
= =

− +
   (41) 

 1 4
2 2 2

1 4

, 1,2,...,6
( )

s
i

s

G A i
G A m

λβ
λ ω

= =
+    (42) 

 3 1, 1,2,...,6i iβ = =     (43) 
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where { } { }1 2 6, ,..., Ta a a a=  is a constant vector from the integration; and iλ  is eigen value of the eigen 
equations. 

Eqs. (27)-(29) result in the common boundary conditions as follows: 
The natural boundary condition for a simply supported end is: 

 1 0ξ ′ = , 1 0w = , 1 0θ ′ =    (44) 
The natural boundary condition for a fixed supported end is: 

 1 0ξ = , 1 0w = , 1 0θ =   (45) 
For the boundary conditions in Eqs. (44) and (45), the CBBCW has three natural boundary 

conditions at both ends. Substituting Eqs. (38)-(40) into the boundary conditions gives: 
 ( ) { } 0B aω =     (46) 

In Eq. (46), the integral constant vector must have a nonzero solution. Hence, the following 
requirement applies: 
 ( ) 0B ω =    (47) 

Solving algebraic Eq. (47) gives the flexural natural vibration frequencies of the CBBCW. 

4.  Solution of natural frequencies of CBBCW without considering the shear deformation effect 
The longitudinal displacement of the CBBCW cross-section at each point without considering the 
effect of the shear deformation is as follows: 
 ( ) ( ) ( ) ( )xi c t, , , , , 1,2u x y z t k x t z z w x t iξ ′= − − =    (48) 
 ( ) ( ) ( ) ( )xi s s, , , , , 3,4u x y z t k x t z z w x t iξ ′= − − =    (49) 

From Eqs. (48)-(49), the longitudinal strain and stress expressions at each point of the CBBCW 
cross-section are as follows: 

 ( )
2

2 1,2xi c t
wk z z i

x x
ξε ∂ ∂= − − =

∂ ∂
  (50) 

 ( )
2

2- 3,4xi s s
wk z z i

x x
ξε ∂ ∂= − =

∂ ∂
  (51) 

 ( )
2

2 1,2xi c c t
wE k z z i

x x
ξσ  ∂ ∂= − − = ∂ ∂ 

   (52) 

 ( )
2

2- 3xi s s s
wE k z z i

x x
ξσ  ∂ ∂= − = ∂ ∂ 

   (53) 

 ( )
2

4 2- 0x e s s
wE k z z

x x
ξσ  ∂ ∂= − = ∂ ∂ 

   (54) 

According to Assumption (2), after neglecting the vertical compressive deformation of concrete 
and steel girder, the relative longitudinal slip between the concrete slab and the steel beam is reduced 
to: 
 ( ),x t hwζ ξ ′= +    (55) 

According to the Hamilton principle ( )1

0
0

t

t
T V dtδ − = , the differential equations and the boundary 

conditions of the CBBCW without considering the shear deformation are as follows: 
 1 1( ) 0slD Jw k hw D J wξ ξ ξ′′ ′′′ ′ ′− − + − + =    (56) 
 2

1 1 0sl slJ I w J Iw k h k h w mwξ ξ ξ′ ′′ ′′′ ′ ′− − + − + + =     (57) 

 0( ) 0LD Jwξ δξ′ ′′− =    (58) 

 1 1 0
( ) 0

L

slJ I w J Iw k h wξ ξ ζ δ′ ′′ ′′′− − + − =     (59) 
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 0
( ) 0LJ Iw wξ δ′ ′′ ′− + =   (60) 

The method of solving flexural natural vibration frequency of the CBBCW without considering the 
effect of shear deformation is the same as that described in Section 3. 

5.  Examples 
Simply supported CBBCW beams and fixed end CBBCW beams of two different spans have been 
used as examples. The spans are 1 14L m=  and 2 16L m= . For the beams in each span, there are five 
different shear connection degrees, i.e. 0.25, 0.40, 0.60, 0.80 and 1.00. The mechanical and 
geometrical properties of the CBBCW beams are 

11 -22.0 10 N msE = × ⋅ , 10 -24.5 10 N mcE = × ⋅ , 0.30sμ = , 0.18cμ = , 37870s kg mρ −= ⋅ , 32570c kg mρ −= ⋅ ,

1 0.4b m= , 4 0.4b m= , 2 0.2b m= , 3 0.5b m= , 5 0.2b m= , 1 2 0.12t t m= = , 3 5 0.025t t m= = , 0.005mwt = ,

0.1mwh = , 0.125mwb = , 0.125mwd = , 2 2
1w w wb d h= +  
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Figure 4. Relationship between the shear deformation effect and the mode orders of flexural natural 

vibration 
 
In order to verify the practicability of the theoretical model in Section 3, ANSYS finite element 

method was used to carry out the simulations. The SOLID65 element was used to simulate the 
concrete slab, the SHELL43 element was used to simulate the steel beam and COMBIN14 element 
was used to simulate the studs. The simulation results are compared with the theoretical results as 
shown in Table 1-4 and Figures 4-5. ANR  denotes the ANSYS finite element calculation results; SDR  
denotes the theoretical calculation results not considering the shear deformation effect; and SSR  
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denotes the theoretical calculation results after comprehensive consideration of shear deformation and 
slip effect. The error of the theoretical calculation has been calculated using ( )SS SS AN AN100E R R R= − ; 
the shear deformation effect has been calculated using ( )SD SD FB FB100E R R R= − ; and the interface slip 

effect has been calculated using ( )SL SS SS E 1.01.0 0.25100 rr r
E R R R

== =
= − . From Table 1-4 and Figures 4-5, 

it can be seen that: 
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Figure 5. Relationship between the interface slip effect and the mode orders of flexural natural 

vibration 
 

Table1. Comparison between calculation results of the ANSYS model and the analytical model 
(L=14m, simply supported) 

r  
Calculation 

methods 
Natural frequencies/Hz 

1st 2nd 3rd 4th 5th 

0.25  

SDR  6.21  21.16  44.88  77.66  119.67  
SSR  6.05  19.26  38.03  60.47  84.98  
ANR  6.09  19.45  37.87  59.30  82.25  

SDE /% 2.63  9.92  17.99  28.42  40.82  
SSE /% -0.76  -1.02  0.44  1.97  3.31  

0.40  

SDR  6.52  22.12  46.15  79.09  121.10  
SSR  6.37  20.05  38.83  61.11  85.46  
ANR  6.40  20.14  38.57  59.92  82.77  

SDE /% 2.50  10.32  18.85  29.43  41.71  
SSE /% -0.56  -0.42  0.66  1.98  3.24  

0.60  

SDR  6.84  23.07  47.58  80.84  123.01  
SSR  6.52  20.85  39.78  61.90  86.09  
ANR  6.65  20.86  39.40  60.68  83.43  

SDE /% 4.88  10.69  19.60  30.59  42.88  
SSE /% -1.95  -0.04  0.97  2.01  3.19  

0.80  

SDR  7.00  23.87  48.85  82.43  124.76  
SSR  6.68  21.48  40.42  62.70  86.73  
ANR  6.82  21.42  40.11  61.37  84.04  

SDE /% 4.76  11.11  20.87  31.47  43.85  
SSE /% -1.95  0.29  0.76  2.16  3.20  
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1.00  

SDR  7.16  24.67  50.13  83.86  126.35  
SSR  6.84  21.96  41.22  63.34  87.21  
ANR  6.93  21.88  40.74  62.00  84.61  

SDE /% 4.65  12.32  21.62  32.41  44.89  
SSE /% -1.25  0.37  1.18  2.15  3.07  

SLE /% 13.71  12.47  7.58  4.55  2.86  
 

Table 2. Comparison between calculation results of the ANSYS model and the analytical model 
(L=14m, fixed supported) 

r  
Calculation 

methods 
Natural frequencies/Hz 

1st 2nd 3rd 4th 5th 

0.25  

SDR  11.94  31.19  59.68  97.23  144.28  
SSR  10.66  25.78  44.88  66.68  90.07  
ANR  10.81  26.02  45.43  67.41  91.02  

SDE /% 11.94  20.99  32.98  45.82  60.19  
SSE /% -1.33  -0.93  -1.21  -1.09  -1.04  

0.40  

SDR  12.41  32.15  60.79  98.50  145.13  
SSR  11.14  26.26  45.51  67.15  90.39  
ANR  11.17  26.51  45.96  67.92  91.48  

SDE /% 11.43  22.42  33.57  46.68  60.56  
SSE /% -0.27  -0.94  -0.97  -1.12  -1.19  

0.60  

SDR  13.05  33.10  62.22  100.10  146.88  
SSR  11.46  26.73  45.99  67.63  91.02  
ANR  11.56  27.06  46.59  68.54  92.05  

SDE /% 13.89  23.81  35.29  48.00  61.36  
SSE /% -0.85  -1.20  -1.30  -1.32  -1.12  

0.80  

SDR  13.53  34.05  63.49  101.53  148.47  
SSR  11.78  27.21  46.63  68.27  91.34  
ANR  11.86  27.53  47.16  69.11  92.59  

SDE /% 14.86  25.15  36.18  48.72  62.54  
SSE /% -0.72  -1.16  -1.12  -1.22  -1.35  

1.00  

SDR  13.84  34.85  64.61  102.96  149.90  
SSR  12.09  27.69  47.10  68.75  91.82  
ANR  12.11  27.94  47.66  69.64  93.10  

SDE /% 14.47  25.86  37.16  49.77  63.26  
SSE /% -0.12  -0.89  -1.17  -1.28  -1.37  

SLE /% 12.06  7.36  4.92  3.30  2.29  
 

Table 3. Comparison between calculation results of the ANSYS model and the analytical model 
(L=16m, simply supported) 

r  
Calculation 

methods 
Natural frequencies/Hz 

1st 2nd 3rd 4th 5th 
0.25  SDR  4.77  16.39  34.53  59.83  92.14  
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SSR  4.61  15.28  30.39  48.85  69.38  
ANR  4.78  15.38  30.34  48.22  67.78  

SDE /% 3.45  7.29  13.61  22.48  32.80  
SSE /% -3.41  -0.68  0.19  1.32  2.36  

0.40  

SDR  5.09  17.19  35.65  61.11  93.41  
SSR  4.93  15.91  31.03  49.49  69.86  
ANR  5.02  15.98  31.00  48.83  68.31  

SDE /% 3.23  8.00  14.87  23.47  33.71  
SSE /% -1.69  -0.40  0.11  1.36  2.27  

0.60  

SDR  5.25  17.98  36.92  62.54  95.00  
SSR  5.09  16.55  31.83  50.13  70.50  
ANR  5.21  16.60  31.76  49.56  68.97  

SDE /% 3.12  8.65  16.00  24.76  34.76  
SSE /% -2.27  -0.28  0.20  1.14  2.22  

0.80  

SDR  5.41  18.62  38.03  63.81  96.44  
SSR  5.25  17.03  32.62  50.92  71.13  
ANR  5.33  17.07  32.41  50.22  69.57  

SDE /% 3.03  9.35  16.59  25.31  35.57  
SSE /% -1.49  -0.26  0.65  1.39  2.25  

0.80  

SDR  5.57  19.10  38.99  65.09  97.87  
SSR  5.41  17.50  33.10  51.56  71.77  
ANR  5.41  17.45  32.98  50.83  70.13  

SDE /% 2.94  9.09  17.79  26.23  36.36  
SSE /% -0.06  0.29  0.37  1.45  2.33  

SLE /% 13.31  13.47  8.71  5.41  3.47  
 

Table 4. Comparison between calculation results of the ANSYS model and the analytical model 
(L=16m, fixed supported) 

r  
Calculation 

methods 
Natural frequencies/Hz 

1st 2nd 3rd 4th 5th 

0.25  

SDR  9.23  24.03  45.99  74.79  110.60  
SSR  8.43  20.53  36.44  54.58  74.47  
ANR  8.54  20.81  36.76  55.13  75.11  

SDE /% 9.43  17.05  26.20  37.03  48.50  
SSE /% -1.21  -1.33  -0.87  -0.99  -0.85  

0.40  

SDR  9.71  24.82  46.94  75.91  111.71  
SSR  8.75  21.01  36.92  55.06  74.95  
ANR  8.86  21.25  37.26  55.62  75.56  

SDE /% 10.91  18.18  27.16  37.86  49.04  
SSE /% -1.18  -1.16  -0.92  -1.00  -0.80  

0.60  
SDR  10.18  25.62  48.06  77.18  113.14  
SSR  9.07  21.64  37.56  55.70  75.43  
ANR  9.19  21.76  37.86  56.21  76.12  
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SDE /% 12.28  18.38  27.97  38.57  50.00  
SSE /% -1.29  -0.52  -0.80  -0.92  -0.91  

0.80  

SDR  10.50  26.42  49.17  78.45  114.58  
SSR  9.39  21.96  38.03  56.17  75.91  
ANR  9.45  22.18  38.38  56.76  76.65  

SDE /% 11.86  20.29  29.29  39.66  50.94  
SSE /% -0.60  -0.99  -0.90  -1.02  -0.97  

1.00  

SDR  10.82  27.05  49.97  79.57  115.85  
SSR  9.55  22.28  38.51  56.65  76.38  
ANR  9.65  22.55  38.85  57.26  77.14  

SDE /% 13.33  21.43  29.75  40.45  51.67  
SSE /% -1.08  -1.19  -0.86  -1.06  -0.98  

SLE /% 13.06  8.37  5.67  3.86  2.70  
Considering both the shear deformation and the interfacial slip effect, the average computational 

error between the theoretical method developed in this study and ANSYS finite element method in 
calculating the first five order flexural natural vibration frequencies of the simply supported and fixed 
end CBBCW beams with the two spans, does not exceed 3.2%, and the maximum error is less than 
3.3%. This is an indication that the two results are in good agreement, which shows that the theory 
developed in this study is correct. 

The flexural natural vibration frequencies of the CBBCW increases with increase of the interface 
slip stiffness, but the increase rate decreases with increase of the flexural natural vibration frequency 
orders of the CBBCW, i.e. the interface slip effect decreases with increase of the flexural natural 
vibration frequency orders of the CBBCW. The interface slip effect on the CBBCW fundamental 
frequency is up to 13%, which cannot be neglected in the calculation. 

The maximum shear deformation effect of the simply supported CBBCW is 45%, and the 
maximum shear deformation effect of the fixed supported end CBBCW is 63%. This is an indication 
that the shear deformation effect of the CBBCW is significant, i.e. the shear deformation has a 
significant effect on the flexural natural vibration frequency of the CBBCW, which cannot be ignored 
in the calculation. Further, the shear deformation effect increases significantly with the order of 
flexural natural vibration frequency. 

The shear deformation effect of the CBBCW increases with increase of the shear connection degree, 
but the increase is very small. The curves between the shear deformation effect of the CBBCW beam 
and the flexural natural vibration frequency order under different shear connection degrees basically 
coincide. The results show that the shear connection degree has no significant effect on the shear 
deformation effect of the CBBCW. 

6.  Conclusions 
Using the Hamilton principle and based on the factors such as the shear deformation, interfacial slip 
and moment of inertia, the flexural natural vibration frequency analysis method for CBBCW has been 
developed. By comparing the results of the analytical solution with those of the numerical solution of 
the finite element method, the analytical calculation method developed in this study has been proved 
to be correct. 

The interface slip effect of the CBBCW decreases with increase of the order of the flexural natural 
vibration frequency, and the interface slip effect of the fundamental frequency cannot be neglected in 
the calculation. 

The shear deformation of the CBBCW has a significant effect on the flexural natural vibration 
frequency, which cannot be neglected in the calculation. Further, the shear deformation effect 
increases significantly with increase of the order of the flexural natural vibration frequency. 
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The shear connection degree has little effect on the shear deformation effect of the CBBCW. 
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