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Abstract. A numerical model of three-dimensional free surface flows has been developed to 

simulate the flow pattern and bed shear stress in a sharp channel bend with 193° curved reach. 

The numerical model solved 3D Reynolds-averaged Navier-Stokes equations with standard  

k − ε turbulence model to compute the flow field and the finite-volume method were used as 

the discretization scheme. The governing equations were solved by employed the explicit 

projection method with two steps. The numerical predictions were verified with experiment 

results and showed that the model enables to resolve the complex three-dimensional flow 

problems and capture the main flow features in sharp channel bends. The influence of non-

hydrostatic pressure was revealed by the results with and without hydrostatic pressure 

assumption. It concluded that the non-hydrostatic model almost has no noticeable influence on 

flow pattern in this sharp channel bend with highly three-dimensional flow characteristics. 

1. Introduction 

River meandering pattern is the normal feature of natural rivers, and straight rivers are the exception 

while meandering rivers are the rule. An outstanding characteristics of flow in an open channel bend is 

a transverse circulation (also known as secondary flows, spiral flows or helical flows), which is 

perpendicular to the primary flow direction, caused by the action of the centrifugal forces present in 

the curved channel. The magnitude and direction of the velocity and bed shear stresses are altered by 

the spiral flows, and then the sediment transport is also redistributed along the bend [1].  

Consequently, this process is important in natural streams with respect to sediment transport, the 

bathymetry evolution, mixing and spreading of pollutants, heat, oxygen, nutrients and biological 

species, and even the conveyance capacity [2]. 

Since the streamwise velocity component varies from the maximum value near the free surface to 

zero at the riverbed, thus, the centrifugal forces push water radially outward which results in the super 

elevation of the free surface between the inner and the outer banks. The imbalance of the centrifugal 

forces and the radial pressure gradient due to water surface deformation. And the water in the upper 

part of the bend is drove toward the outer bank, while water close to the riverbed is migrated toward 

the inner bank. Accordingly, the secondary circulation is formed at the cross-section in the bend. The 

secondary flows combine with the main flow to produce the spiral motion, which is typical three-

dimensional flow. The helical motion of water cannot be ignored in the sediment transport, riverbed 

shear stress distribution and even the riverbed deformation, especially in high curvature bends. 

http://creativecommons.org/licenses/by/3.0
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It is important and challenging to predict and understand of the 3D flow characteristics in the river 

bends in river engineering and management. It not only contributes to a better understanding of the 

three-dimensional flow characteristics, but also can provide basic flow field data for the following 

mass transport and bathymetry changes researches. 

Abundant studies of flow or bed deformation in curved bends of different cross sections and 

different curvature degree with fixed or movable bed were performed by means of field observation, 

laboratory experiments [3-9] and two-dimensional numerical modeling [5,10-16]. 

Over the years many 3D numerical models of flow in open channel bends have been published [17-

22]. The 3D models can describe much more comprehensive flow field conditions, especially, the 

detail profiles of flow field over water depth. Moreover, the 3D models can accurately simulate the 

helical motion directly in bends without extra semi-empirical sub-models. 

Only Zeng’ simulation, of the aforementioned three-dimensional models, validated and evaluated 

comprehensively the profiles of the streamwise velocity, the cross-section circulation, and the 

turbulent kinetic energy employing a non-hydrostatic three-dimensional numerical model. The 

simulation was executed in a sharply curved bend, which was more severe than all channel bend 

experiments of prior, and provided high-quality three-dimensional experiment data through high-tech 

measuring instrument. However, rigid lid approximation was used in the simulation. In addition, the 

effectiveness of the non-hydrostatic model comparing with the hydrostatic model was not much 

concerned, and the influence of the non-hydrostatic pressure on the flow pattern was not illustrated in 

such a sharply curved bends with strong secondary flow and complex helical motion [23]. 

The present paper focuses on the three-dimensional characteristics in a strongly curved channel 

flume. Firstly, in such a sharply curved bend with strong secondary flow and complex helical motion, 

whether the model enables to resolve the complex three-dimensional flow problems and capture the 

main flow features. Secondly, because the non-hydrostatic model based on the premise that the ratio of 

the vertical to horizontal scales of motion is not sufficiently small, like as short waves where the 

vertical acceleration motion is so significant that the hydrostatic approximation is not valid. The non-

hydrostatic model has showed its significant benefits in short wave problems [24,25]. Comparing with 

that of short wave problem in ocean, the long wave problem in river channel, where the vertical 

motion close to the inner and outer bank is dramatic due to the helical motion of water in the 

transverse direction, whether this outstanding vertical motion can be captured accurately only by 

employing hydrostatic model, and whether the influence of non-hydrostatic need to be taken into 

account. So, a three-dimensional free surface model was used to reproduce the forms of water surface 

level and vertical velocity profiles as well as secondary flows at typical cross sections and their 

evolutions along the channel bend. Moreover, the influence of non-hydrostatic pressure on flow 

pattern in such curved channel was also considered to distinguish between the hydrostatic pressure and 

non-hydrostatic pressure. 

The rest of the paper is organized as follows: after a description of the numerical model we applied 

in Section 2, the experimental description and simulation setup are presented in Section 3, in Section 4, 

the water surface profiles, flow field and bed shear stress as well as their mechanisms of evolution in 

sharp channel bends are demonstrated and analyzed, and then the obtained results are summarized in 

Section 5. 

2. Model description 

2.1. The governing equations 

The 3D Reynolds-averaged Navier-Stokes equations were solved in the numerical model, and the 

finite-volume approach was employed as the discretization scheme. For more details about the model 

can be found in reference [26]. 
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where u , v  and w are the velocity components in the horizontal x , y  and vertical z  directions, 

respectively; t  is the time; p  is the pressure; h  and v  are the coefficients of horizontal and vertical 

kinematic eddy viscosities, respectively;  is the constant water density; and g is the gravitational 

acceleration. 

The pressure p  in equations can be decomposed into the sum of its hydrostatic and a non-

hydrostatic component. Thus, p can be expressed as 

  ),,,(),,(),,(),,,( tzyxqztyxgtyxptzyxp a +−+=   (5) 

where ap  
is the atmospheric pressure; the second term on the right-hand side of the equation (5) 

represents the barotropic contributions to the hydrostatic pressure and q denotes the non-hydrostatic 

pressure component. 

The height function method [27] was used to capture the free surface motions with relatively high 

computational efficiency, especially, in large-scale problems. 

At the moving free surface , the kinematic boundary condition is 
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At the riverbed bottom ),( yxhz = , the kinematic boundary condition is 
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By applying Leibniz rule with kinematic boundary conditions (6) and (7), the free surface equation 

can be achieved by integrated continuity equation (1) over water depth: 
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In this study, the standard −k  turbulence closure model was employed to compute the diffusion 

coefficients. The eddy viscosity in the standard −k  model can be given by 


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Ct =  (9) 

where t  
is the eddy viscosity; k  is the turbulence kinetic energy; and   is the dissipation rate. 
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where G  is the turbulence production term 
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where c =0.09, 1C =1.44, 2C =1.92, k =1.0 and  =1.3 [28]. 

2.2. The boundary conditions 

Four boundary conditions need to be specified in channel bed simulation, including inflow, outflow, 

free surface and bottom. The cells at the free surface and bottom require special treatment. The 

standard wall functions were employed within the near wall area (30< 100/* VDn ), where nD is the 

normal distance from the bed [29]. 

At the free surface 

0/ = zk

 

(13) 

)07.0/()( 5.1 hck  =  (14) 

where,   is the von Karman constant, having a universal value of 0.41 [28]. 

At the bottom 
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where *V  is the shear velocity at the bottom, it was defined by 
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where V  
is the velocity along to the wall. 
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At the inflow boundary, the velocity and turbulence variables were specified. In general, 

homogeneous turbulence can be specified simply as 

u =constant, v =0, w =0 

 

(19) 

k =0.03 2u  (20) 
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For open channel flow, it can be specified as 
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At the outflow boundary,   and zero normal gradients were specified. 

2.3. The numerical method 

 

 

Figure 1. Grids and variables arrangement. 

A boundary-fitted coordinate system in vertical direction was employed in this model. The horizontal 

domain was covered by a set of orthogonal unstructured grid, and the 3D numerical mesh was built 

with several horizontal orthogonal unstructured grid over water depth. Its advantage and challenge are 
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equivalent to the method based on sigma-coordinate system. If the layer thickness is defined uniformly 

over the water depth, the vertical coordinate system is very similar to the usual sigma-coordinate 

system [29]. 

A different variables arrangement was presented in this mesh system, which caused the PPE 

(Pressure Poisson Equation) was symmetric and positive definite, and then can be solved effectively 

[30]. The 3D grid system and variables arrangement can be founded in figure 1. 

 

 

Figure 2. Vertical grid system. 

 

In figure 2, K layers were divided over the vertical direction, and it was defined as 

Kktyxzz kk ,,1),,,(2/12/1 == ++

 

(26) 

where 2/1z = ),( yxh−  at the bottom, and 2/1+Kz = ),,( tyx  at the free surface. 

The vertical velocity relative to layer interface 2/1+kz  was defined as the difference between the 

vertical velocity along the streamline and the vertical velocity along the interface as follows 
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By virtue of the kinematic conditions, it gave 

02/12/1 == +K

 

(28) 

The governing equations were solved by employed the explicit projection method with two steps. 

Firstly, the momentum equations with the advection and diffusion terms were solved, and the 

intermediate velocities can be obtained. Secondly, the Pressure Poisson Equation (PPE) which was 

combined of the discretized continuity and momentum equation were solved, and then the 

intermediate velocities can be corrected by the pressure term, and the velocities of new step were 

obtained. 

The advection terms and diffusion terms were discretized using the Perot’s scheme [31,32]. After 

the new velocity were achieved, the surface elevation at new step can be calculated by the free-surface 

equation, and the turbulence flows can also be resolved directly. 

The solution process for a step was summarized as follow: 
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⚫ initializing variables for  , u , v , w , k ,   and p ; 

⚫ compute t  from equation (9); 

⚫ solve discretized momentum equations (2)-(4) to obtain intermediate velocity field 2/1+nu , 
2/1+nv  and 2/1+nw  by ignoring the non-hydrostatic term; 

⚫ solve the PPE for the non-hydrostatic pressure correction term q by substituting the new 

velocities denoted by the known intermediate velocity filed; 

⚫ update the non-hydrostatic term and intermediate velocity field to obtain the new velocity field 
1+nu , 1+nv and 1+nw ; 

⚫ solve the free surface equation (8) to obtain new water level 1+n ; 

⚫ compute the vertical grid velocity 1+n  from the semi-discretized form of equation (1); 

⚫ solve the k and   equations (10) and (11). 

3. The Blanckaert's experiment and simulation setup 

Figure 3 shows a sketch of the sharply curved laboratory flume which made of plexiglas was carried 

out by Blanckaert at EPFL [33]. The flume consisted of three sections: a 193° bend with constant 

centerline radius of curvature, cR =1.7 m, was connected with a 9 m long straight channel reach at 

upstream and followed by a 5 m long outflow section at its downstream. The width of the laboratory 

flume was B =1.3 m and with its vertical sidewalls. The mean flow depth and velocity in the test was 

H =0.159 m and U =0.43 m/s, respectively. This gave a Froude number of rF =0.34 (subcritical flow) 

and a Reynolds number of eR =68,400 (rough turbulent). The bed was filled with a 35 cm thick layer 

of uniform sand with a median diameter of 50d =2.0 mm. 

The length of the bend section was cL =5.73 m, and the total length of the flume was L =19.73 m 

along the centerline. The experiment was performed in a flume with a relatively shorter ( BLc / =4.40) 

and narrower bend ( HB / =8.18) with a much stronger curvature ( cRH / =1/10.69), as shown in figure 

3. Such geometry was rare in natural lowland rivers, but do occur in man-made channel or mountain 

rivers [34]. Details of the laboratory flume and hydraulic parameters are given in table 1. The detailed 

3D measurement results with high spatial and temporal resolution can be founded in Blanckaert [33]. 

 

 

Figure 3. Sketch of the flume in which the 193° bend experiment was performed. 
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Table 1. Laboratory flume parameters and hydraulic conditions. 

 Q  U  H  S  R  
*u  C  

50d  eR  rF  Rc/B
 

HB /  
cRH /  

unit [m3/s] [m/s] [m] [‰] [m] [m/s] [m1/2/s] [mm] [103] [-] [-] [-] [-] 

Q89 0.089 0.43 0.159 0.94 0.128 0.034 39.6 2.0 68.4 0.34 1.31 8.18 0.094 

notes: Q , discharge; )/(BHQU = , flume-averaged velocity; H , flume-averaged water depth; S , flume-

averaged water surface gradient on the centerline; R , hydraulic radius; gRSu =* , shear velocity; 

*/)( uUgC = , Chezy coefficients; 50d , median grain size diameter; eR = /UH , flume-averaged flow 

Reynolds number; rF = gHU / , flume-averaged Froude number. 

 

The straight channel reaches were covered by rectangular grids, while the trapezoid grids were 

used in the bend reach. The simulation replicated the flow condition with 190,920 grid cells 

(172×37×30) in the longitudinal, transverse and vertical directions, respectively. Sensitivity tests with 

different vertical grid dimensions indicated that the 30 layers model can represent completely the 

vertical structure of flow field, particularly close to the bottom. Therefore, 30 uniform vertical layers 

were specified over the water depth. 

The table 1 shows the initial parameters in simulation, and it run until the steady-state was reached. 

At the upstream entrance, a constant discharge of 0.089 m3/s was specified, while a constant water 

depth 0.142 m was finally prescribed at the downstream end boundary, which can ensure the depth at 

the 2.5 m upstream of the bend entrance equals to the value of the experiment. The initial elevation 

equalled to the value of 0.142 m at the downstream end boundary. 

To analyze the influence of non-hydrostatic pressure on the flow pattern in curved channel, the 

experimental bend has been simulated using both the hydrostatic model and the non-hydrostatic model, 

and correspondingly, the other parameters remained unchanged. 

4. Results and discussion 

In the following, the analysis and discussion of the former simulation results are presented from three 

aspects. The first aspect details the plane distribution and surface profiles of water level at typical 

cross sections. Then, both the streamwise and transverse velocities profiles over the water depth with 

the hydrostatic and non-hydrostatic pressure results are illustrated in the second aspect. Finally, the 

plane distribution of bed shear stress is given in the last aspect. 

4.1. Free surface profile 

The contour map of water level at the last step was shown in figure 4. The simulation was executed 

with constant initial and boundary conditions until the steady state solution was reached. It can be seen 

from the figure 4 that there have no obvious water surface deformation in upstream and downstream 

straight reaches, and the water level at the inner and outer part of the channel is always consistent. 

However, once the water flow into the curved reach, severe deformation of water surface is taken 

place, it shows that the water surface elevation increases at the outer bank and decreases at the inner 

bank due to the bend curvature and induced secondary current effects. Besides, the water surface 

gradient close to the inner bank is larger than that of the outer bank, and the free surface deformations 

disappear rapidly when water flow out of the curved reach. 

Figure 5 compares the calculated normalized free surface profiles in some cross sections along the 

bend with measured data and Zeng’s predicted results. In the figure, mh is the mean water depth in the 

section, and the horizontal ordinate is given in non-dimensional form as H/ , with 2/2/ BB −  , 

where the positive direction is consistent with the transverse direction ( n ), it towards the outer bank 

of the channel. The agreement between the calculated free surface profiles and measured data is very 

good, the magnitude and shape as well as the changing process of the free surface deformations along 

with the channel bend are well reproduced. The water depth near the inner bank in D30 section is  
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Figure 4. Contour map of water level by numerical calculation. 

 

slightly underpredicted, the root mean square error (RMSE) were 0.24 and 0.16, for the Zeng's results 

and the simulation results, respectively. The correlation coefficient, which is defined that perfect 

agreement between the model results and observations yields a value of 1.0, whereas complete 

disagreement yields a value of 0[35], they were 0.92 and 0.96, respectively. The maximum water level 

difference between the outer and the inner banks occurs around D90 section in both experiment and 

simulation, it was also well reproduced, the RMSE were 0.09 and 0.08, and the correlation coefficient 

were 0.99 and 0.99 respectively. For other sections, the RMSE were 0.23 and 0.09, and the correlation 

coefficient were 0.93 and 0.99 in D15 section, correspondingly, 0.13 and 0.09 for RMSE, and 0.97 and 

0.99 for correlation coefficient in D180 section. In the P0.5 section, poor agreement appeared with 

RMSE of 0.04 and 0.15, and correlation coefficient of 0.99 and 0.90, respectively. In general, the 

present simulation with height function method to trace free surface motion is capable of predicting a 

better water level deformation in sharply curved channel. Moreover, the hydrostatic pressure 

difference induced by superelevation is the main factor affecting the formation of transverse 

circulation. 
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Figure 5. Comparison of normalized free surface profiles between measured (symbols) and computed 

(Zeng’s (dashed lines) and this article (solid lines)) in typical cross sections along the channel bend. 

4.2. Flow field 

The profiles of streamwise velocity in cross-sections along the bend are compared in figure 6. The 

velocity and depth are correspondingly represented by horizontal and vertical axis. And they are 

normalized with the bulk channel velocity and local water depth, respectively. In the figure, six typical 

sections along the bend are selected, and five points in plane are located in each section. 
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Figure 6. Comparison of vertical profiles of streamwise velocity between measured (symbols) and 

computed (Zeng’s (dashed lines) and this article with hydrostatic (solid lines) and non-hydrostatic (dot 

lines)) in typical cross sections along the channel bend. 

 

Overall, the simulations capture the main features of flow structure over water depth in the bend. 

The vertical profiles of the streamwise velocity behave typical logarithmic distribution in section M0.5 

as the fully developed flow in the upstream straight reach, and there have no noticeable difference in 

the whole cross section. In section D30, the magnitudes of the velocity close to the inner bank increase 

while those near the opposite bank decrease once the water flows into the curved reach. The RMSE at 
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points H/ =-1.5 were 0.15, 0.09 and 0.09 for the Zeng's results and hydrostatic and non-hydrostatic 

results, and the correlation coefficient were 0.89, 0.96 and 0.96, respectively. In section D90 and D150, 

the velocities at points H/ =-3.0 have pronounced variations, and the maximum velocity in vertical 

direction moves from the free surface down to the lower part of the water column. Although the 

simulations correctly predict the maximum velocity in section D90, the velocities at free surface in 

D90 and the full vertical profile in D150 are overpredicted. The RMSE at midpoints H/ =0.0 in 

section D150 were 0.08, 0.11 and 0.11, and the correlation coefficient were 0.96, 0.92 and 0.92, 

respectively. Besides, the vertical profiles of streamwise velocities are no longer logarithmic 

distribution, they are flattened by increasing the velocities in the lower part of the water column and 

decreasing the velocities in the free surface part. Which are consistent to the observation by De Vriend 

[4], and this reduces the intensity of the centrifugal force effects and in turn weakens the intensity of 

the main recirculation eddy [1]. In the downstream part of the channel, the velocities close to the inner 

bank decrease continually and that near the opposite bank increase correspondingly in section P1.5 

and P3.5. And the distributions of velocity profiles are gradually recovered from flattening to log-type 

again as the water flows away from the curved reach. The average RMSE in section P1.5 were 0.11, 

0.11 and 0.11, and the average correlation coefficient were 0.91, 0.90 and 0.90, respectively. 

Throughout all the selected sections along the channel, the maximum streamwise velocities are 

close to the inner bank at the entrance of the curved reach at the beginning, and then they gently shift 

toward the outer bank along with the water flow movement, near the exit of the curved reach the 

maximum streamwise velocities are close to the outer bank and they keep this pattern for some 

distance in the downstream reach. This process can be regarded as the trace of main flow. 

Figure 7 shows the comparison of vertical profiles of transverse velocities between measured and 

calculated in typical sections along the bend. It has the same sections and non-dimensional treatment 

manners to the figure 6. 
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Figure 7. Comparison of vertical profiles of transverse velocity between measured (symbols) and 

computed (Zeng’s (dashed lines) and this article with hydrostatic (solid lines) and non-hydrostatic (dot 

lines)) in typical cross sections along the channel bend. 

 

In general, compared to the magnitudes of velocities in streamwise directions, those in transverse 

direction are much smaller. The predictions in straight reach and upstream bend are better than that of 

downstream bend, even though the predictions can capture the features of vertical profiles in sections 

D90 and D150, and the disagreements mainly occurs at the magnitudes of the velocities. In the 

upstream and downstream straight reach, the transverse velocities are fairly weak except for the 

section P1.5, which is still much effected by secondary circulation because of the close to the upstream 

curved reach. The predictions show excellent agreement with the measurements in section D30, except 

for the point at H/ =3.0 where the transverse velocity becomes negative near the free surface, The 

average RMSE in this section were 0.05, 0.05 and 0.05, and the average correlation coefficient were 

0.92, 0.91 and 0.92, respectively. Maybe there present the backward secondary outer-cell close to the 

outer bank in experiment observations, however, this phenomenon was not captured by the 

simulations as well as Zeng’s. The reason may be related to the nonlinear turbulence model which can 

account for non-isotropic turbulence effects, as the reason that the outer-bank circulation is generated 

by the anisotropy of the cross-stream turbulence [13]. The same situation can also be found at the 

same point in section D90. The section D90 is located near the apex of the bend, where the secondary 

flow is fully developed. The intensity of the secondary circulation increases sharply in section D90, 

particularly close to the inner bank. Unfortunately, the simulations generally underpredict the 

maximum transverse currents both in the top and bottom of the water column with adverse directions. 

The average RMSE in this section were 0.06, 0.10 and 0.10, and the average correlation coefficient 

were 0.92, 0.88 and 0.88, respectively. Notwithstanding the intensities of transverse current in section 

D150 decrease evidently, the underpredition still present in most points of the section. The average 

RMSE in this section were 0.06, 0.07 and 0.07, and the average correlation coefficient were 0.94, 0.92 
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and 0.92, respectively. The prediction close to the outer bank has acceptable agreements with 

measurements along with the disappearance of the outer-bank cell. The simulation results display a 

fast decay of transverse velocity at downstream straight reach, and the simulations have good 

agreements with observations. 

The hydrostatic pressure and non-hydrostatic pressure results are also presented in figure 6 and 

figure 7. The differences between the two sub-model results are negligible, and the non-hydrostatic 

pressure model does not display its performance in this sharp channel bend. However, the non-

hydrostatic model has showed its significant benefits in short wave problems [24,25], and it has hardly 

any influence on the flow pattern in sharp channel bends. The reason maybe the vertical acceleration 

in the channel bends is not dramatic, particularly for steady flow in channels as the non-hydrostatic 

model is based on the hypothesis that the hydrodynamic pressure can not be neglected when there has 

intensive vertical acceleration. 

 

 

Figure 8. Contour maps of streamwise velocities and transverse secondary circulations (left), as well 

as streamline patterns (right) in typical cross section along the channel bend. 
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Figure 8 show the contour map of streamwise velocities and transverse secondary circulations, as 

well as streamline patterns in typical sections along the bend. It can be distinguished easily the inner 

and outer banks from the free surface shape in figure 8. And from the contour map of streamwise 

velocities in the left side of figure 8, it can be seen that the maximum velocities in vertical direction 

display process shifting from the free surface to close to the bottom of the water column, 

simultaneously, they shift from close to the inner bank at the entrance (section D0) toward near the 

opposite bank at the exit and downstream straight reach (sections D180 and P1.5) in the transverse 

direction. 

It also can be seen from the transverse velocity field in the left side of figure 8 that the transverse 

velocities began to appear and all move toward the inner side at the entrance of the bend, as the bend 

turn right the fluid are forced to make adjustment. In the following curved reach in sections D60, 

D120 and D180, as a consequence of the actions of the centrifugal forces and water pressures which 

results in the transverse circulation, it shows that the current moves toward the outer bank close to the 

free surface and toward the inner bank close to the bottom, remarkably, due to the restrict of vertical 

wall boundaries, the upward current and downward current occur near the inner and outer bank, 

respectively. Under the action of inertia forces, the transverse circulation still present as the flow past 

the curved reach in section P1.5, but the strength of transverse circulation is much smaller than that of 

upstream curved reach. 

From the streamline patterns on the right side of figure 8, it can be seen that the core of the 

transverse eddy cell in transverse direction moves away from the side close to the inner side and 

toward the opposite side close to the outer side (from section D60 to section P1.5), simultaneously, 

they shift from near the middle of the water column downward close to the bottom (from section D60 

to section D180) and then move upward again in the downstream straight reach (in section P1.5) in 

vertical direction as the intensity of the secondary flow is decaying and the flow pattern is gradually 

recovering fully developed turbulent flow in straight channel. 

4.3. Bed shear stress 

Figure 9 shows the contour map of normalized bed shear stress by numerical calculation. The bed 

shear stress represents the stream intensity near the river bed, and it will help to determine the initial 

erosion/deposition process in alluvial channels. For in sharply curved channel due to the presence of 

highly three-dimensional flow features, the accurate simulation of bottom velocity field as well as bed 

shear stress by three-dimensional model can provide guarantee for the subsequent bed deformation 

calculation.  

 

 

Figure 9. Contour map of normalized bed shear stress by numerical calculation. 
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The bed shear stress in the upstream straight reach keeps uniform distribution across the whole 

section, but this uniform stage is broken in the following curved and downstream straight reaches. The 

bed shear stress is moderately amplified near the inner bank around section D30 and is strongly 

amplified near the outer bank once enter into the downstream straight reach. There have apparent 

differences between inner and outer banks. Although the region close to the inner bank in curved 

channel has relatively large bed shear stress, it often takes place deposition due to the sediment 

particles are transported from the outer bank to the inner bank by the bottom current. 

The amplification close to the outer bank in outlet straight reach is nearly twice times than that of 

fully developed flow in upstream incoming straight reach. The results are consistent with preceding 

analysis on streamwise velocities, and the magnitude and location of bed shear stress also vary along 

with the route of the main flow. 

5. Conclusions 

A three-dimensional numerical model with hydrostatic pressure and non-hydrostatic pressure sub-

models has been developed to calculate the flow field and bed shear stress in a laboratory flume 

experiment of Blanckaert [32] which features a sharp open channel bend with 193° curved reach. The 

model predictions were verified with the experimental results obtained by Blanckaert. The 

comparisons of the predicted and measured data showed that the predictions were capable of capturing 

the main bend flow features. The verification of free surface profile showed that the three-dimensional 

numerical model with height function method can track the free surface motion efficiently and 

correctly in sharp channel bends. And it has advantages for dealing with similar problems with 

significant water level difference and large scale natural river bends. The simulation reproduces the 

three-dimensional flow characteristics in sharp open channel bends after verification of velocity 

profile over depth in streamwise and transverse directions respectively. It can be found from the study 

results that the distributions of velocity profiles vary from log-type to flattening and recover to 

logarithmic distribution again along with the water flow moving. The changes of maximum velocity in 

a section and across sections display the shift route of main flow, it shift from the inner bank toward 

the outer bank and keep close to the outer bank for some distance at the exit of the curved reach and 

past it. The comparison between hydrostatic model and non-hydrostatic model showed that non-

hydrostatic model has no noticeable influence on flow pattern in this sharp channel bend with highly 

three-dimensional flow characteristics. 
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