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Abstract. We study the potential impact of a possible warming in the Arctic Ocean in the 21st 

century on the methane hydrates stability zone. In order to assess the space-time variability of 

the ocean bottom temperature, we employ a regional version of a coupled ice-ocean model that 

has been developed at the Institute of Computational Mathematics and Mathematical 

Geophysics, Siberian Brunch of the Russian Academy of Sciences. This study is based on a 

combination of the coupled ocean-ice model and a one-dimensional thermal diffusion sediment 

model. As an atmospheric forcing, some results obtained with CMIP5 climate models 

simulated with the RCP8.5 scenario (from 2006-2100) are used. We have found that warm 

North Atlantic water will have a major influence on the Arctic gas hydrates. In such regions as 

the Barents Sea, the West Svalbard continental margin, and the continental shelf of Norway 

methane hydrates may exist in shallow waters, where the strongest warming occurs. For this 

reason, these regions are most vulnerable to releasing methane into the ocean and the 

atmosphere when the sea water temperature is increased by approximately 2-3 °C. According 

to our estimates, the seafloor water warming in these areas during the next 100 years may lead 

to a shift in the upper boundary of the gas hydrates stability zone by 10-110 m.  

1. Introduction 

Gas hydrates are ice-like crystalline compounds of water and gas, basically, methane that occupy the 

porous space of marine sediments. Methane hydrates are formed at sufficiently high pressures and low 

temperature conditions provided that a sufficiently large volume of methane is available [1].  The gas 

hydrate stability zone (GHSZ) is a part of the Earth's lithosphere and hydrosphere where the 

thermodynamic conditions correspond to the gas hydrate steady state. 

The methane hydrates were discovered in the seafloor deep water sediments (exceeding 300 m) 

along the continental margins and within the permafrost areas, both continental and relic subsea 

permafrost, particularly in the Arctic regions. Conditions for the formation of methane hydrates are 

found in the Arctic Ocean [2]. The Arctic marine sediments preserve large quantities of methane in gas 

hydrates, whose stock is estimated as 100-9000 GtC [2, 3, 4]. The assessments of methane in subsea 

permafrost-associated gas hydrates are in the range from 2 to 1400 GtC [2]. The shallow gas hydrates 

of the Arctic regions might dissociate and release large quantities of methane if oceanic water is 

warmed.  

The last decades are characterized by significant climate changes, most pronounced in the polar 

latitudes of the Northern Hemisphere [5]. The most striking among them is а statistically significant 

positive linear trend of the average annual air temperature in 1936-2007, reduction in the sea-ice area 

in the summer period and the volume of the multi-year ice of the Arctic Ocean, degradation of the 

underwater permafrost, and the destruction of the shores of the Arctic seas [6]. 

http://creativecommons.org/licenses/by/3.0
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Warming of the ocean bottom water and thawing of the subsea permafrost can destabilize hydrate 

deposits and lead to methane release. The growing interest in studying this atmosphere greenhouse gas 

is due to a higher radiation activity of methane as compared to carbon dioxide. Methane that migrates 

to the seafloor after dissociation may be released into the water at shallow water depths and   into the 

atmosphere. The loss of sea ice is likely to increase in the 21st century, and, therefore, sea-air 

exchange of methane will also be enhanced [7]. Release of methane from melting hydrates and 

oxidation to CO2 could enhance the ocean acidification and oxygen depletion in the water column [3].  

By now the measurement data have revealed an increase in the methane emission into the 

atmosphere of the Arctic [7-11], which can occur as a result of the submarine gas hydrates dissociating 

[8, 7, 9] and the subsea permafrost thawing [10, 11].  

In the shallow Arctic shelf with a water depth not exceeding 100 m, the existence of gas hydrate 

deposits is possible if the subsea permafrost is present in sediments [12, 13]. In study [14], the 

sensitivity of the permafrost-related hydrate reservoirs to warming up to the end of the 21st century 

was investigated. According to the model results, if the warming will continue until the end of the 21st 

century, the permafrost-related gas hydrates will respond very slowly to changes in the bottom water 

temperature [14]. In paper [13], simulations with a model for a thermal state of the submarine 

permafrost forced with the data from the ice core reconstructions are performed, and it is shown that 

the time scale of heat propagation is 10-20 kyr. The present-day methane emissions [11] can be 

associated with the processes of much longer time scales [15], for example, associated with the 

thermokarst processes in the Holocene [16]. 

In [7], it was concluded that the release of methane from the seas of the Arctic Ocean is only 

slightly smaller than that from the continental Arctic, with 2/3 of the marine emissions concentrated in 

the seas of the western part of the Arctic. The maximum anomalies of methane concentration were 

observed in November-December over the sea surface along the coasts of Norway, Novaya Zemlya, 

Svalbard, and other regions of the Arctic. A significant part of the methane emission from the seas 

occurs in the regions with a sea depth in the range from 100 to 300 m. The GHSZ in these areas begins 

at sea depths of 250-300 m, and with rising of the bottom water temperature at these depths methane 

hydrates can be prone to dissociation. The estimates of the sensitivity of the GHSZ to the warming of 

the bottom water temperature in the Arctic Ocean obtained earlier on the basis of simulation [17] are 

confirmed by the conclusions for the western Arctic seas [7]. Study [17] has revealed that reduction of 

the methane hydrate stability zone occurs in the Arctic Ocean between 250 and 400 m water depths 

within the upper 70 m of sediments in the Atlantic inflow area within 10-20 years.  

The goal of this study is to analyze the sensitivity of the marine sediment GHSZ of shallow and 

mid-depth regions of the Arctic Ocean to the climate changes by the end of the 21st century with a 

scenario of the anthropogenic impact on the climate system. The present study combines the seafloor 

temperature increase projections with calculations of the GHSZ thickness changes over time. The 

scenario RCP8.5 is used, since it predicts the strongest warming by the end of the 21st century. 

We use a set of interacting numerical models to study the effect of climate changes on the ice cover, 

the thermohaline structure of the Arctic Ocean, and the gas hydrate stability zone. The set of the 

numerical models includes: a regional version of the coupled ice-ocean model (SibCIOM), which was 

developed at the Institute of Computational Mathematics and Mathematical Geophysics, Siberian 

Brunch of the Russian Academy of Sciences [18, 19]; a model of the thermophysical processes in 

sediments [13, 17], and the methane hydrate stability condition as reported in [20].  

To obtain the ocean and sea ice surface currents, the NCEP / NCAR atmosphere reanalysis data 

[21] were used for 1948-2006 and the results of calculations of the climate system models 

participating in the CMIP5 project [22] with the scenario RCP8.5 for 2006-2100. 
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2. Data and methods 

2.1. The ocean model 

The SibCIOM ocean model [18, 19] is based on the conservation laws for heat, salt, and momentum 

formulated under hydrostatic, Boussinesque, and “rigid lid” approximations. After the separation of 

the momentum equations into the external and internal modes, the barotropic equations are expressed 

in terms of a stream function. When integrating over time, a hybrid explicit-implicit scheme and 

splitting to the physical processes and spatial coordinates are used. The QUICKEST scheme is 

employed to approximate advection, while the multidimensional extension uses the COSMIS approach 

[23]. The vertical adjustment is considered as a mixed layer parameterization based on the Richardson 

number [24]. The ocean circulation model was coupled with the CICE v3 model of the 

thermodynamics of elastic viscous-plastic ice [25] and multi-category sea ice thermodynamics [26]. 

The sea ice advection utilizes a semi-Lagrangian scheme [27].  

For the current study, the simulation domain included the Arctic and the Atlantic Ocean north of 

20°S. The grid resolution for the North Atlantic was chosen to be 0.5°x 0.5°. At 65°N, the North 

Atlantic spherical coordinate grid is merged with the displaced poles of the Arctic grid. In the Arctic, 

an average grid spacing is about 18 km. The model version used here has 38 unevenly spaced vertical 

levels with a maximum resolution of 5 m in the upper 20-meter layer. No-slip boundary conditions at 

the solid boundaries are used. The specified mass transports at open boundaries and river inflows are 

compensated by transports through the outflow boundary at 20° S. At the initial stage the model is 

forced with the NCEP/NCAR reanalysis data [21]. The initial distribution of the temperature and 

salinity fields corresponds to the climatic data of the Polar Science Center Hydrographic Climatology 

[28] for the winter period. 

 
Figure 1. Air temperature predictions based on six CMIP5 models under RCP8.5 scenario from 2006 

to 2100 in the Arctic north of 65 °N. 

2.2. Future climate conditions 

A preliminary analysis of the CMIP5 model data archives has shown that they can be divided into 

several groups which differ from each other by the climate in the early 21st century, and also by the 
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warming in the Arctic region [29] (see Figure 1). As a consequence, six models were selected for 

further analysis, each as a representative for one of the groups: 

1) INM-CM4: the model characterized by the least warming in the Arctic in the 21
st
 century. 

2) BCC-CSM-1.1: the model is also characterized by a relatively small warming in the Arctic. 

However, this model reveals a significant increase in the temperature of the lower atmosphere in 

the Norwegian Sea and in the northwestern part of the Barents Sea. 

3) IPSL-CM5B-LR: the model belonging to a group of models with moderate warming above the 

Arctic Ocean in the 21st century accompanied by larger warming near Novaya Zemlya. 

4) MPI-ESM-LR: the model also belonging to a group of models with moderate warming above the 

Arctic Ocean. However, unlike the IPSL-CM5B-LR model, the warming is relatively 

homogeneous over space in the whole Arctic water area. 

5) CNRM-CM5: the model is characterized by moderate warming above the Arctic Ocean, and, like 

BCC-CSM-1.1, an increase in the temperature of the lower atmosphere in the Arctic region is 

greatest in the Norwegian Sea and in the northwestern part of the Barents Sea. 

6) GFDL-CM3: the model with a very strong warming in the Arctic. 

The state of the ocean and sea ice obtained as a result of the first stage of the simulation (from 1948 

to 2006) based on the SibCIOM model was used as initial fields for the modeling of the future state of 

the ice-ocean and bottom sediments up to the end of the 21st century under the scenario of the 

anthropogenic impact on the climate system (RCP 8.5). When carrying out the experiments, anomalies 

of the atmospheric forcing were set for 2006-2100 in the form YM(t)-YM(2006)+YR(2006), where 

YM(t)  is an atmospheric variable calculated from the CMIP5 model data (t indicates the time instant), 

and YR is the corresponding variable calculated from the NCEP / NCAR data. This method of 

specifying the atmospheric forcing for the oceanic model provides the absence of a jump in the 

transition from the reanalysis data to the data calculated based on the CMIP5 models. The expression 

YM(t)-YM(2006)+YR(2006) was calculated taking into account the annual variation of the atmospheric 

variables in 2006. 

2.3. Gas hydrate stability zone simulation 

To evaluate the temperature fields in the ocean sediments, we use a model for the thermal state of the 

subsea sediments [17]. With this model we solve a one–dimensional heat diffusion equation in a 

sediment column subject to a prescribed temperature at the sediment–ocean interface and a prescribed 

heat flux at the lower boundary. The model has a total height of 1000 m and a vertical grid cell height 

of 0.5 m. We set an average sediment thermal conductivity as 1.5 W/m·K [30]. A more detailed 

description of the numerical model is available in [17]. 

We made use of the bottom water temperatures of the past (1948-2005) and future bottom water 

temperatures (2006-2100) as the upper boundary condition or the one-dimensional thermal diffusion 

sediment model. In this study, the geothermal gradients were calculated based on the heat flux 

reconstruction [31] with values of 20-120 mWm
-2

. The initial temperature profile in the sediment is in 

equilibrium with the seabed bottom water temperature data adopted for 1948 [28] and the geothermal 

flux [31]. In the period from 1948 to 2100 we simulate the transient heat exchange between the bottom 

water and the ocean sediment. In this study, we do not consider a potential effect of the hydrate zone 

on the temperature field evolution. 

For a time step equal to one month, the GHSZ thickness for each sediment column was determined 

by using the pressure-temperature equilibrium condition of the methane hydrate system. In this case 

we used the model of heat transport in sediment, the bottom water temperature, and the geothermal 

heat flux data. The methane hydrate stability condition is based on the general regression reported in 

[20]. The GHSZ was simulated as a part of the sediment column in which the pressure exceeded the 

dissociation pressure. The water depths in the numerical domain corresponded to the vertical 

resolution from the SibCIOM model and further converted to pressure. In order to simulate the 

presence of a sulfate reduction zone, we set the top of the sediment column (7 m) to be free from 

hydrates [32]. However, the presence of methane in the pore space is not provided, since there is no 



ENVIROMIS2018

IOP Conf. Series: Earth and Environmental Science 211 (2018) 012017

IOP Publishing

doi:10.1088/1755-1315/211/1/012017

5

detailed information on the distribution and concentration of methane hydrate in the sediment. 

Therefore, the methane hydrate stability condition is necessary but not sufficient for the presence of 

gas hydrate.  

 
Figure 2.Bottom water temperature changes (2091–2100 minus 2006–2010) obtained in a numerical 

experiment with atmospheric forcing using models with the RCP 8.5 scenario: (a) INM-CM4, (b) 

BCC-CSM-1.1, (c) IPSL-CM5B-LR, (d) MPI-ESM-LR, (e) CNRM-CM5, (f) GFDL-CM3. Bold black 

contour indicates 0-°C isotherm. 
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The initial GHSZ thickness is determined by the hydrostatic pressure distribution and the initial 

temperature in the sediment column. The transient evolution of the methane hydrate stability zone for 

each sediment column with a 1-month time step was calculated in the period from 1948 to 2005 and 

then from 2006 to 2100 according to the sediment temperature. 

 

Figure 3. Gas hydrate 

stability zone (in meters) for 

2006 over the Arctic region 

simulated in this study. 
 

3. Results 

Analyzing the predicted future state of the ocean obtained in the course of the numerical experiments 

we confine ourselves to a discussion of variability of the near-bottom temperature. The numerical 

experiments aimed at forecasting the future climatic state of the ocean were carried out using six 

versions of the atmospheric forcing from the CMIP5 output. In our experiments Arctic warming led to 

a gradual reduction and disappearance of the sea ice in the summer months and an increase of the 

temperature of the ocean upper layer. On the Arctic shelf, the thermal signal from the surface layer 

gradually penetrated into the deeper layers of the ocean. 

The Atlantic waters entering through the Fram Strait and the Barents Sea have been always 

considered as one of the main sources of heat for the Arctic basin [33]. According to the observations, 

the variability of the atmospheric dynamics determines the intensity of the Atlantic water inflow into 

the Arctic basin [34]. When analyzing the spatial-temporal variability of the temperature fields, we 

have found that from the 2030s the ocean model simulates warming of the intermediate layer of the 

Arctic Ocean. This process is caused by the arrival of anomalously warm Atlantic water through the 

Fram Strait and the Barents Sea. The results of our experiments show that the features of the 

atmospheric circulation of the climatic models selected as surface forcing for the ocean model 

determine the spatial distribution and intensity of heat fluxes entering the Arctic basin with the ocean 

currents. 

 The model simulates warming in the near-bottom layer of the Barents and Kara Seas, as well as on 

the continental slope in all six experiments for all versions of the atmospheric forcing. The intensity of 

warming depends on the forcing used and varies from 2 to 6 degrees. The results of the simulation 

using the CNRM-CM5 and GFDL-CM3 models atmospheric data differ markedly (Figure 2). In the 

experiment with the CNRM-CM5 forcing the increase in the bottom temperature in the central part of 

the Arctic basin significantly exceeds the temperature in the Barents Sea. This indicates a more 

intensive Fram Strait branch of the Atlantic waters. On the contrary, the use of atmospheric data of the 

GFDL-CM3 model does not form a temperature increase along the Atlantic water passing through the 

Fram Strait. The bulk of the Atlantic water enters the Arctic through the Barents Sea. It is interesting to 

note that in the seas of the Siberian shelf there is no increase in the near-bottom temperature. The 
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exception is the simulation using the GFDL-CM3 atmospheric data (warming up to 4 degrees in the 

East Siberian Sea). 

A discussion of the features of the atmospheric dynamics above the Arctic Ocean in the CMIP 

models is not the objective of this study. We used various versions of atmospheric forcing to identify 

areas of the Arctic Ocean where a significant increase of the near-bottom temperature is possible. 

Calculation of the thermodynamic conditions for a possible existence of gas hydrates was carried out 

in the upper 1000-meter layer of the bottom sediments of the Arctic Ocean. In this case, the submarine 

permafrost-related methane hydrates are not taken into account. A previous study [14] has shown that 

permafrost-related gas hydrates respond very slowly to changes in the bottom water temperature for 

the RCP 8.5 scenario and the hydrates will remain stable for the next 100 years. 

The simulated hydrate stability zone for 2006 is shown in Figure 3. The pressure-temperature 

conditions are suitable for the methane hydrate accumulations beginning with ocean water depths of 

250-300 meters. It should be noted that here we do not consider deep-sea areas of the Arctic Ocean 

(water depths exceeding 3000 m), since they are not considered to be gas-bearing. The lower boundary 

of the GHSZ depth in the bottom sediment column can reach 1000 m due to a low geothermal flow 

and large water depth, as was found in the Canada Basin (Figure 3). The sea bottom is not always the 

upper boundary of the GHSZ, and, thus, at water depths lower than 300 m this boundary lies at a depth 

of about 50 m below the bottom. 

It should be emphasized that favorable pressure-temperature conditions are not sufficient for the 

existence of gas hydrate deposits. To accumulate a gas hydrate, it is necessary that the methane content 

exceed the limit of its solubility in water. The shelf area, where there is an increased content of 

methane in the bottom sediments, is of great interest. Such areas have been identified in the Barents 

Sea. It is believed that the increased methane content in these areas is the consequence of upward 

migration of the gas through faults [35].  According to our estimates, the GHSZ thickness on the 

Barents Sea shelf can reach not more than 200 m, since the Barents Sea is characterized by shallow 

bathymetry. 

The sensitivity of the GHSZ to the ocean bottom temperature variations during the 21st century 

was estimated by employing the SibCIOM ocean model with atmosphere forcing by an ensemble of 

six CMIP5 climate models under the RCP8.5 scenario. Figure 4 shows the predicted shift of the GHSZ 

upper boundary or the complete destruction of the hydrate inventories for 2006-2100. According to the 

results obtained, the methane hydrates that are present in sediments at sea depths of 250-500 m are 

most affected by the ocean bottom water warming (Figure 4). 
The warm North Atlantic Water will have a major influence on the state of the Arctic gas hydrates. 

The greatest relative changes in the methane hydrate stability will occur in the Barents Sea region, 

near the Norwegian Continental margin. According to our estimates, an increase in the bottom water 

temperature in these areas have brought about a vertical reduction in the GHSZ thickness by 10-40 m 

in 1990-2006, and over the next 100 years it may lead to a further shift of the stability zone upper 

boundary by 10-110 m (Figure 4). The methane hydrates in the Barents Sea region, at the Norwegian 

continental margin, the West Svalbard continental margin, and on the Eurasian continental shelf are 

most susceptible to destabilization in calculations with the whole atmospheric forcing. 

Downward shift of the upper boundary of the GHSZ and a possible degradation of methane 

hydrates can lead to the accumulation of free methane in the layers of bottom sediments. Observations 

of large emissions reported in papers [7, 8, 9] are consistent with the estimates obtained in this study. 

The main difference of the marine hydrates from the previously considered permafrost-related 

hydrates [13, 12, 16] is that they can exist at small bottom depths and even near the bottom. Therefore, 

they are less resistant to the ongoing processes of warming in the near-bottom layer of water. 

4. Conclusions 

The sensitivity of the methane hydrates stability zone to the ocean bottom temperature variations 

during the 21st century was assessed by the regional SibCIOM model with an atmosphere forcing 

produced by an ensemble of six CMIP5 climate models with the RCP8.5 scenario. According to the 
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results of the calculations, the shallow and mid‐depth regions containing methane hydrates at sea 

depths of 250-500 m are most susceptible to the warming effects. Anomalously warm North Atlantic 

water entering the Arctic Ocean through the Fram Strait and the Barents Sea simulated by the 

SibCIOM will have a major influence on the warming of the near-bottom waters and, hence, on the 

Arctic gas hydrates. 

 

 
Figure 4.Change of the depth of the upper boundary of the gas hydrate stability zone (value for year 

2100 minus value for year 2006) obtained in numerical experiments with atmospheric forcing from the 
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RCP 8.5 simulations with (a) INM-CM4, (b) BCC-CSM-1.1, (c) IPSL-CM5B-LR, (d) MPI-ESM-LR, 

(e) CNRM-CM5, (f) GFDL-CM3. 

The areas where hydrates are most susceptible to the destruction during the next 100 years are least 

sensitive to the choice of a climate model. In such regions as the Barents Sea, the West Svalbard 

continental margin, and the continental shelf of Norway, methane hydrates may exist in shallow 

waters where the strongest warming occurs. For this reason, these regions are most sensitive to 

releasing methane into the ocean and the atmosphere when the seawater temperature is increased by 

approximately 2-3 °C. According to our estimates, the seafloor water warming in these areas during 

the next 100 years may lead to a shift in the upper boundary of the stability zone by 10-110 m. 
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