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Abstract. The indirect tensile strength test methods such as three and four points bending tests 
and Brazilian tests have been commonly used tensile strength determination and other 
mechanical properties of rocks since it is a quick, easy, and inexpensive testing methods. EN 
and ASTM standards suggested that sample dimensions of three and four points bending tests 
have been different from each other. The aim of this study, in order to analyses the effect of 
sample dimension on bending strength property of fine crystalline marble and is to determine 
the direct tensile strength (DTS) of rock by using new dumbbell shape. Indirect tensile strength 
of marble was determined by using three and four-point bending test methods according to 
related standards. In addition to experimental study, stress distribution and stress intensity on 
the sample was analyzed by using ANSYS. As a result, four-point bending test is more suitable 
for determining of tensile strength of marble.  

1.  Introduction 
The tensile strength of rock is a key parameter for determining the load bearing capacity, their 
deformation, fracturing, crushing, drilling, tunnel boring, and blasting etc., and is used to analyse the 
stability and serviceability of rock structures [1-3]. And also the tensile strength of rocks is much 
lower than the compression strength [4,5]. Direct and indirect methods are used to determine the 
tensile strength of the rocks. Because specific tools or apparatus are needed for the application of the 
uniaxial tensile test and difficulties in preparing the sample, it is not preferred [5-7]. Although the 
Brazilian indirect tensile strength (BTS) test (splitting test) is the most commonly used indirect tensile 
test (ITS) in the world, in some studies it is stated that BTS does not exactly represent the true tensile 
strength value. Three-point bending strength (3PBS) and four-point bending strength (4PBS) tests are 
other indirect methods which used in determination of the tensile strength in rocks [4,5]. These tests 
are applied at different sample sizes according to both EN and ASTM standards. A brief summary of 
the literature on dumbbell-shaped DTS and bending strength test is presented below. 

First, Brace [8] stated that the most suitable sample geometry to be used to determine the direct 
tensile strength of the materials should be the dog bone (dumbbell) shape. Hoek [9] determined the 
axial tensile stresses of dog bone shaped specimens in a triaxial cell and concluded that the length / 
diameter ratio should be 2-3. In the study, it was pointed out that when the direct tensile specimen is 
not in the form of a dog bone, the stress concentration occurs at the upper end of the cylindrical 
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specimen (at epoxy or cement connection points or at the points of connection with compression), an 
invalid test result is obtained by breaking near the upper end of the specimen. Colback [10] stated that 
the samples used in the DTS tests were difficult to prepare, that the appropriate sample could not be 
prepared, and that failure usually occurred outside to the center of the sample. Gorksi [11] has 
patented an apparatus (test setup) that is self-centering under eccentric load for use in DTS in the 
USA, particularly for brittle materials. The developed device is designed to be subjected to tensile 
stress of dog-bone shaped specimens under compression force similar to that proposed by Brace [8]. In 
the study conducted by Nott [12], DTS and BTS tests were performed on artificial rock samples and 
compared with numerical model results. The tensile strength values determined by dog bone 
(dumbbell-shaped) test specimens were not found valid because they were broken at the sample 
connection points. Klanphumeesri, in his dissertation study [13], has developed a new loading device 
(tool) to apply indirect tensile stress to a dog-bone shaped rock sample. In studies carried out by Unlu 
and Yilmaz [14], a new experimental setup conforming to ISRM standards was proposed to determine 
the direct tensile strength of cylindrical rocks. They determined that the values obtained from 
experiments using this setup were lower than the DTS values. In order to prevent the difficulties 
encountered in the adhesion of the sample (for attachment) in DTS test, Komurlu et al. [5] proposed a 
new method for dog bone shaped specimens prepared in a lathe. Tufekci et al. [3] developed a new 
jaw gripping mechanism to determine the DTS in their study and compared the results of the tests on 
dumbbell-shaped specimens with those of Brazilian indirect tensile strength.  

 
Komurlu et al. [15] conducted numerical modelling studies using the finite element method on dog-

bone shaped samples on DTS test to determine the effects of sample geometry and steel apparatus 
geometry that grips the sample. Then, direct tensile tests were applied for 3 different rock groups and 
concrete samples and compared with the model results. According to the results of the study, the dog 
bone specimen geometry with a minimum diameter of 3.2 cm and cutting angles of angular part of 63° 
was determined as the optimal geometry both numerically and experimentally. A series of experiments 
were conducted to examine the tensile behaviour on reinforced (steel reinforcement and resin) rock 
specimens by Wu et al. [16].  

 
Perras and Diederichs [17] investigated the relationship between DTS and BTS, and the 

predictability of tensile strength from other methods. According to literature reviews of their study, it 
has been found that accurate tensile strength values cannot be predicted from other laboratory tests. 
Efimov [7] tried to determine the tensile strength by using 4-point bending strength measurements. 
Biolzi et al. [6] have developed formulas to predict the tensile strength from the flexural (bending) 
strength in terms of shape and size effects in their study on granite specimens. Caviello et al. [18] 
performed various types of tests for determining the tensile strength of soft rocks, including the 
Brazilian, ring, Luong tests and three and 4- point bending tests. They presented an assessment of 
some widely used laboratory techniques on the basis of experimental data from the literature and their 
own investigations. In addition, they stated that 3PBS and 4PBS tests indicated acceptable standards in 
determining the bending strength of materials such as rocks, building materials, cement and concrete. 
Mixed mode crack behaviour has been investigated experimentally and theoretically by applying 
asymmetric 4-point bending tests on pre-cracked granite specimens by Razavi et al. [19]. Plangklang 
et al. [20] investigated the time-dependent tensile strength values by applying 4-point bending strength 
tests on the salt specimens. According to the results of the study, it was found that under the tensile 
stress, the salt showed elastic properties and was subject to deformations depending on the time.  

In this study, bending tests were carried out on samples of different sizes in accordance with 
ASTM and EN standards on fine crystalline marble samples to try to reveal the differences between 
them and the results were compared with the results obtained from a new dumbbell-shaped direct 
tensile test. In addition to experimental study, stress distribution and stress intensity on the sample 
analyzed by using ANSYS.  
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2.  Experimental study 
The fine crystalline marble used in this study was obtained from Afyon region in Turkey. Afyon 
marble is entirely composed of calcite minerals and shows granoblastic texture. The calcites are 
interlocked and there is no clearance between them. The chemical composition of marble was given in 
Table 1 and the physical and mechanical rock properties were given in Table 2. The density, bulk 
density and porosity tests were carried out in accordance with TS EN 1936 [21], P-wave velocity, and 
uniaxial compressive strength (UCS) tests were carried out in accordance with ISRM (2007) suggested 
methods [22].  

Table 1. Chemical composition (%) of fine crystalline marble 

CaO MgO Al2O3 Fe2O3 SiO2 K2O Na2O SO3 LOI 

55.90 0.27 0.02 0.02 0.001 0.001 0.001 0.04 43.23 

Table 2. Physical and mechanical properties of rock 

Specific Density (g/cm3) 2.731 ± 0.009  
Bulk density (g/cm3) 2.720 ± 0.004 
Total porosity (%) 0.381 ± 0.158 
P-wave velocity (m/s) 5300  ± 250 
Uniaxial compressive strength (MPa) 77.78 ± 6.74 

 
2.1. Three point bending strength 
3PBS tests were carried out in accordance with TS EN 12372 [23] (flexural strength under 
concentrated load) and ASTM C 99 [24]. According to TS EN 12372 standard, the thickness (h) 
should be between 25 mm and 100 mm, the total length (L) should be equal to 6 times the thickness, 
the width (b) should be 50 mm ≤ b ≤ 3h and the distance between the supporting rollers (l) should be 
equal to 5 times the thickness. In this study, 3PBS tests (EN standard) were carried out on specimens 
of dimensions 50*50*300 mm and 25*50*150 mm, provided that the specified conditions were met. 
Since the load must be increased uniformly at a rate of 0.25±0.05 MPa/s until the specimen breaks, the 
loading rate for the specimens of dimensions of 50*50*300 mm was chosen to be 66 N/s and for the 
specimens of dimensions 25*50*150 mm was chosen to be 41 N/s. According to ASTM standard, the 
specimens should be approximately 101.6*203.2*57.2 mm in size,  the distance between the 
supporting rollers (l) should be 177.8 mm and the loading rate should be 74 N/s. 12 samples were used 
for all experiments performed in this section and 3PBS (ߪଷ௕ሻ is calculated from the Equation (1).    
 

ଷ௕ߪ                                                                           ൌ
ଷி௟

ଶ௕௛మ
                      (1)  

 
Where the F was measured as the maximum applied force, l is the length of span, b is the width of 
specimen, h is the thickness of specimen.  

 
2.2. Four point bending strength 
4PBS tests were also carried out in accordance with TS EN 13161 [25] (flexural strength under 
constant moment) and ASTM 880-98 [26]. According to TS EN 13161 standard, dimensions of 
specimens, the distance between the supporting rollers and loading rates are same as in TS EN 12372. 
According to ASTM standard, the specimens should be approximately 102*32*381 mm in size, the 
distance between the supporting rollers (l) should be 318 mm and the loading rate should be 70 KPa/s. 
12 samples were used for all experiments performed in this section too. 4PBS (ߪସ௕ሻ for EN standard is 
calculated from the Equation (2) and for ASTM standard is calculated from the Equation (3). The 
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notations are the same as in TS EN 12372. Figure 1 shows the dimensions of the six types of bending 
strength tests.   

௕ߪ                                                                           ൌ
ி௟

௕௛మ
                                      (2)  

 

௕ߪ                                                                         ൌ
ଷி௟

ସ௕௛మ
                                     (3) 

 

Figure 1. Test arrangement for a) EN 12372  (50*50*300mm) b) EN 12372  (25*50*150mm)  
c) ASTM C 99 d) EN 13161 (50*50*300mm) e) EN 13161 (25*50*150mm) f) ASTM 880-98 

 
2.3. Direct tensile strength 
The DTS tests were performed on specimens having a new dumbbell-shaped sample geometry and a 
jaw gripping mechanism developed by Tufekci et al. [3] given in Figure 2 (a) and in an accordance 
with ISRM [22] suggested methods.  All samples which were free from cracks or discontinuities were 
tested on dry conditions. All bending tests and DTS tests were carried out on the same 
electromechanical universal test device which is fully automatic computer controlled and 100 N 
capacities (Figure 2 b). In this study, 9 marble samples were used in DTS tests. DTS is calculated by 
the following Equation (4).  

௧ߪ                                                                      ൌ
ி

ሺగ஽మሻ/ସ
                                     (4) 

Where F is the maximum applied force to the sample and D is the diameter of the region where the 
sample is failed. 
 

a) 

b) 

c) 

d) 

e) 

f) 
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Figure 2. a) Technical drawing of dumbbell shaped specimen b) Displays of the DTS experiment 

3.  Numerical study 
For the six different bending test methods described in the experimental study section, stress 
distribution and stress intensity occurring on the rock specimen were analyzed with the ANSYS 
Workbench R18. In finite element analysis (FEA), the samples were subjected to loads of 1 MPa 
which were calculated from their analytical formulas. The amount of load required to achieve a 
maximum stress of 1 MPa on cross-section is calculated from Equation (5). 

 

ߪ ൌ ெ೐

ௐ೐
      (5) 

Where Me is the maximum bending stress to occur in the sample, We is the moment of resistance. For 
rectangular samples; it is calculated with Equation (6). 

 

௘ܹ ൌ
௕௛మ

଺
     (6) 

 
Where b is the width of the sample, h is the thickness of the sample.  

 
In the analyzes, the modulus of elasticity was assumed to be 30 GPa and the Poisson’s ratio 0.3. 

The graphical maximum principal stress distributions in the frontal and lower surfaces obtained at the 
end of the analyses for each standard test sample are given in Figures (3-8). In all graphs, positive 
stresses show tensile stresses and negative ones show compressive stresses. Since the shear stresses in 
the cross-sections are very close to zero, the maximum principal stress values equal the maximum 
tensile stresses in the sample. FEM analysis results conducted for different bending tests is shown Fig 
3-8. As expected, the maximum tensile stress value occurs at the bottom-middle part of the sample. 
There isn’t any stress concentration within the sample due to uniform smooth geometry. 

 

Bending strength 

DTS 
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Figure 3. EN 12372_50*50*300 mm a) frontal surface b) lower surface normal stress distribution 

 
 

 

 
Figure 4. EN 12372_25*50*150 mm a) frontal surface b) lower surface normal stress distribution 

 

 
Figure 5. ASTM C99 a) frontal surface b) lower surface normal stress distribution 

 
 
 
 
 



World Multidisciplinary Earth Sciences Symposium (WMESS 2018)

IOP Conf. Series: Earth and Environmental Science 221 (2019) 012093

IOP Publishing

doi:10.1088/1755-1315/221/1/012093

7

 
 
 
 
 
 

 
Figure 6. EN 13161_50*50*300 mm a) frontal surface b) lower surface normal stress distribution 

 

 

 
 

Figure 7. EN 13161_25*50*150 mm a) frontal surface b) lower surface normal stress distribution 
 
 

 
Figure 8. ASTM C880 a) frontal surface b) lower surface normal stress distribution 
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In the finite element analysis applied to the samples of the different standards, the normal stresses 
occurring at the interface between the front surface and the lower surface of the sample are shown in 
Figure 9. As a result of the analyses, the numerical results obtained from the 4PBS experiments are 
closer to the analytical results than the numerical results obtained from the 3PBS experiments. The 1 
MPa stress calculated analytically in the 3PBS experiments is a single point in the two-dimensional 
plane. In the finite element model, the element with a certain dimension is placed to this point and the 
average stress is calculated approximately by determining the forces acting on both surfaces of this 
element. Since the stress distribution along the length is not constant and changes linearly, the forces 
in the finite element model are lower than the calculated forces. In the 4PBS experiments, the 1 MPa 
stress, calculated analytically in a two-dimensional plane, is formed along a line in the range of two 
forces. Because the forces acting on both two surfaces of the finite element placed in the mid-section 
are uniform, it is closer to the analytical results. 

 

 

Figure 9. Maximum principal stress 
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4.  Results and discussions  
3PBS, 4PBS and DTS test results are presented in Table 3 and graphically shown in Figure 10. 
According to the results, the average of 4PBS values was found to be 32.4% lower for samples with 
dimensions of 50*50*300 mm, 35.6% lower for samples with dimensions 25*50*150 mm and 6.2% 
lower for samples with dimensions conforming to the ASTM standard, according to the average of 
3PBS values. The highest 3PBS results were observed in samples of sizes 50*50*300 mm in 
accordance with EN 12372 standard, the highest 4PBS results were observed in samples of sizes 
102*32*381 mm in accordance with ASTM 880-98 standard.  

Table 3. Bending strength and direct tensile strength test results 

3 Point Bending Strength (MPa) Direct Tensile 

(EN) (ASTM) Strength (MPa) 

50*50*300 mm 25*50*150 mm 101.6*203.2*57.2 mm    

Mean SD Mean SD Mean SD Mean SD 

15.80 4.04 12.94 1.17 14.26 1.69 3.19 0.61 

4 Point Bending Strength (MPa)  

(EN) (ASTM)  

50*50*300 mm 25*50*150 mm 32*102*381 mm  

Mean SD Mean SD Mean SD  

10.68 0.93 8.33 0.93 13.38 0.98  

 

Figure 10. Comparison of bending and tensile strength results of marble 

According to the results of the dumbbell shaped DTS tests, the average tensile strength of the fine 
crystalline marble investigated in this study were found to be 3.19 MPa. In some studies [4-7], 
researchers mention that the bending strength tests (both 4 and 3 point) in rocks are one of the indirect 
methods used to predict the tensile strength. However, in this study, the three point bending strength 
results were determined 4.95, 4.06 and 4.47 times higher than the DTS result, respectively. Similarly, 
the four point bending strength results were found to be 3.35, 2.61 and 4.19 times higher than the DTS 
result, respectively.  
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5.  Conclusions 
Three and four bending testing methods are most commonly performed according to ISRM, ASTM, 
and EN standards. The effect of sample dimension for a consistent three and four points bending value 
has not been well defined in previous works. The aim of this study, in order to analyses the effect of 
sample dimension on bending strength property of fine crystalline marble and is to determine the 
direct tensile strength (DTS) of rock by using new dumbbell shape. It was also investigated that 
whether the relation exists between direct and indirect tensile test results. In this study, in both 4PBS 
and 3PBS experiments, it has been found that the dimensions of the test sample play an important role 
in determining the value of the bending strength. As a result of the FEM, the numerical results 
obtained from the 4PBS experiments are found to be closer to the analytical results than the numerical 
results obtained from the 3PBS experiments. Moreover, four-point bending test is more suitable for 
determining of tensile strength of marble. According to the results obtained from this study, it is 
suggested that new scientific studies (including correction coefficients) should be carried out on more 
rock types in order to be able to estimate tensile strengths from bending experiments. 

Acknowledgment(s)  
This study was supported by The Scientific and Technological Research Council of Turkey 
(TUBITAK-1001 Project No. 116M724). We thank TUBITAK for their contributions. 

References 
[1] D.Q. Dan, H. Konietzky, and M. Herbst, “Brazilian tensile strength tests on some anisotropic 

rocks,” International Journal of Rock Mechanics & Mining Science, vol. 58, pp. 1–7, 2013. 
[2] F. Dai, K. Xia, J.P. Zuo, R. Zhang, & N.W. Xu, “Static and Dynamic Flexural 

StrengthAnisotropy of Barre Granite,” Rock Mech. Rock Eng., vol. 46, pp. 1589–1602, 2013. 
[3] K. Tufekci, S. Demirdag, N. Sengun, R. Altindag & D. Akbay, “A new design test apparatus for 

determining direct tensile strength of rocks,” EUROCK 2016 Rock Mechanics and Rock 
Engineering: From the Past to the Future – Ulusay et al. (Eds) pp. 295-300, 2016. 

[4] A. Mardalizad, R. Scazzosi, A. Manes and M. Giglio, “Four-point bending test on a middle 
strength rock: numerical and experimental investigations,” Fracture and Structural Integrity, 
vol. 41, pp. 504-523, 2017. 

[5] E. Komurlu, A. Kesimal and A.D. Demir, “A numerical modelling study for determining ideal 
size and geometry of dog bone shaped direct tensile strength test rock specimens,” EUROCK 
2016 Rock Mechanics and Rock Engineering: From the Past to the Future – Ulusay et al. 
(Eds), pp. 325-330, 2016. 

[6] L. Biolzi, S. Cattaneo, and G. Rosati, “Flexural/Tensile strength ratio in rock-like materials,” 
Rock Mech. Rock Engng., vol. 34 (3), pp. 217-233, 2001. 

[7] V. P. Efimov, “Determination of tensile strength by the measured rock bending strength,” 
Journal of Mining Science, vol. 47, No. 5, pp. 580-586, 2011. 

[8] W.F. Brace, “Brittle Fracture Of Rocks,” In: Judd WR (ed) Proceedings of the International 
Conference on State of Stress in the Earth‘s Crust. Elsevier, New York, pp. 111–174, 1964. 

[9] E. Hoek, “Fracture Of Anisotropic Rock,” J. S. Afr. Inst. Min. Metall., vol. 64(10), pp. 501–518, 
1964. 

[10] P. S. B. Colback, “An analysis of brittle fracture initiation and propagation in the brazilian test,” 
Proc. 1st Congr. Int. Soc. Rock Mech., Lisbon, vol. 1, pp. 385–391, 1966. 

[11] B.P. Gorski, “Tensile Testing Apparatus,” United States Patent, Number 5193396, 1993. 
[12] J.A. Nott, “Tensıle strength and faılure criterion of analog lithophysal rock,” Doctor of 

Philosophy Degree in Engineering Department of Civil and Environmental Engineering, 
Howard R. Hughes College of Engineering Graduate College University of Nevada, Las 
Vegas, 2009. 

[13] S. Klanphumeesri, “Direct Tension Testing Of Rock Specimens,” Master of Engineering Thesis, 
Suranaree University of Technology, 2010. 



World Multidisciplinary Earth Sciences Symposium (WMESS 2018)

IOP Conf. Series: Earth and Environmental Science 221 (2019) 012093

IOP Publishing

doi:10.1088/1755-1315/221/1/012093

11

 
 
 
 
 
 

[14] T. Unlu, and O.A. Yilmaz, “Development of a new push–pull direct tensile strength testing 
apparatus (PPTA),” Geotechnical Testing Journal. Vol. 37, Issue 1, pp. 60-70, 2014. 

[15] E. Komurlu, A. Kesimal, and A. Durmus Demir, “Dog bone shaped specimen testing method to 
evaluate tensile strength of rock materials,” Geomechanics and Engineering, vol. 12, no. 6 
pp. 883-898, 2017. 

[16] C. Wu, X. Chen, Y. Hong, R. Xu, and D. Yu, “Experimental ınvestigation of the tensile 
behavior of rock with fully grouted bolts by the direct tensile test. Rock Mech. Rock Eng. 
vol. 51 pp. 351–357, 2018. 

[17] M.A. Perras, and M.S. Diederichs, “A Review of the tensile strength of rock. concepts and 
testing,” Geotechnical and geological engineering, vol. 32(2), pp. 525-546, 2014. 

[18] A. Coviello, R. Lagioia, and R. Nova, “On the measurement of the tensile strength of soft 
rocks,” Rock Mechanics and Rock Engineering, vol. 38 (4), pp. 251-273, 2005. 

[19] S.M.J. Razavi, M.R.M. Aliha, and F. Berto, “Application of an average strain energy density 
criterion to obtain the mixed mode fracture load of granite rock tested with the cracked 
asymmetric four-point bend specimens,” Theoretical and Applied Fracture Mechanics, In 
Press, Corrected Proof., 2017. 

[20] J. Plangklang, K. Artkhonghan, P. Tepnarong, and K. Fuenkajorn, “Time-dependent tensile 
strength of maha sarakham salt,” Engineering Journal of Research and Development, vol. 28 
(4), pp. 5-12, 2017. 

[21] TS EN 1936, “Natural stone test methods - Determination of real density and apparent density 
and of total and open porosity”, Turkish Standards Institution, 2010. 

[22] R. Ulusay, & J.A. Hudson, “The complete ISRM suggested methods for rock characterization, 
testing and monitoring: 1974-2006, suggested methods prepared by ısrm commission on 
testing methods editors: Compilation Arranged by the ISRM Turkish National Group 
Ankara, Turkey. 2007. 

[23] TS EN 12372, “Natural stone test methods- Determination of flexural strength under 
concentrated load,” Turkish Standards Institution, 2013. 

[24] ASTM C99/C99M-15, “Standard test method for modulus of rupture of dimension stone,” 
ASTM International, USA.  

[25] ASTM C880/C880M-15, “standard test method for flexural strength of dimension stone,” ASTM 
International, USA.  

[26] TS EN 13161, “Natural stone test methods - Determination of flexural strength under constant 
moment,” Turkish Standards Institution, 2014. 

 
 


