
IOP Conference Series: Earth and
Environmental Science

PAPER • OPEN ACCESS

An Implementation of Service Composition for
Enterprise Business Processes
To cite this article: Jian Ke et al 2019 IOP Conf. Ser.: Earth Environ. Sci. 234 012091

View the article online for updates and enhancements.

You may also like
Designing Online Healthcare Using DDD
in Microservices Architecture
M Rizki, A N Fajar and A Retnowardhani

-

Authentication and Authorization of End
User in Microservice Architecture
Xiuyu He and Xudong Yang

-

Design of Information System Architecture
of Garment Enterprises Based on
Microservices
Weilun Tang, Li Wang and Guangtao Xue

-

This content was downloaded from IP address 3.144.10.242 on 16/05/2024 at 21:50

https://doi.org/10.1088/1755-1315/234/1/012091
https://iopscience.iop.org/article/10.1088/1742-6596/1898/1/012010
https://iopscience.iop.org/article/10.1088/1742-6596/1898/1/012010
https://iopscience.iop.org/article/10.1088/1742-6596/910/1/012060
https://iopscience.iop.org/article/10.1088/1742-6596/910/1/012060
https://iopscience.iop.org/article/10.1088/1742-6596/1168/3/032128
https://iopscience.iop.org/article/10.1088/1742-6596/1168/3/032128
https://iopscience.iop.org/article/10.1088/1742-6596/1168/3/032128
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsshfx7XZbFbOXAP0ZhGNthEw45eqjVrbvFHLqeTnFyMz16zuVInFx6XRyJlD395fcqvVUyW5ZdVkHPoJ6s5s6Ng8veilq2HG8aGIFzLEuBnaFsDJ0Wz00dzMIn2OfwmRu9IznmWch65okzvD9LRJdvwn_4INXMSvhDGExKxYmTQscC-aQdU1KU4EgLLSyy7MHfyF5aBoJk8Arj_nWtKPfH5RWLo_6AIiZsUBYFW6SdfODQsnwnWNh-i1sqJVznnTvYdrm30AznZ52lMJSkDzOFYfXB8bLkPhStu6uJ82fnvMgWiYXw20aNI_JiOlgf37CrMAKwq6-MQ19jTz153KMGxlKXQ-xi2&sig=Cg0ArKJSzJu9OYX54M0R&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

GSKI 2018

IOP Conf. Series: Earth and Environmental Science 234 (2019) 012091

IOP Publishing

doi:10.1088/1755-1315/234/1/012091

1

An Implementation of Service Composition for Enterprise

Business Processes

Jian Ke, Jian Bo Xu and Shu Feng

Hunan University of Science & Technology, Xiangtan 411201, Hunan, China

Email: hellokejian@163.com; jbxu@hnust.edu.cn; fengshu_gis@163.com

Abstract. The Microservice Architecture (MSA) is an advanced architecture with flexible

technology selection, independent on-demand expansion, and high availability. It is one of the

best solution for enterprise software systems to cope with cloud deployment. Moreover, Spring

Cloud provides comprehensive technical support for microservice architecture; also, it is the

best technical framework for implementing microservice architecture. The container

technology represented by Dockers provides an independent and undisturbed deployment

environment for microservice architecture. Based on the microservice architecture and

lightweight container technology, this article propose an implementation idea for service

composition.

1. Introduction
In the process of enterprise informatization construction, it is essential to integrate business processes

with information technology. Lacking of overall planning and theoretical support leads to the

following three features of the software architecture in the enterprise:

(1) The monolithic architecture became the main deploying mode [3]. Monolithic architecture

software is easy to debug in the early stages of development, runs simply, easy to deploy. What we

needs to do is just copy the packaged application to the server. By running multiple copies of the

stateless service on the back end of the load balancer, we could easily realize the horizontal expansion

of the application, and the operation or maintenance threshold is low.

(2) As demand changes, the system gradually becomes much more complex, new developers

cannot figure out the business logic. Therefore, fixing bugs and adding new features is quite difficult

and time-consuming. In the end, the system would fall into a huge, incomprehensible quagmire.

(3) Traditional development models have no advantages in cost and efficiency, which would limit

the development of enterprises. Monolithic applications also make it quite difficult to adopt new

architectures and programming languages. Eventually, we cannot achieve agile development or even

rapid deployment with Non-expanding, low reliability applications.

2. Related Work

The Microservice Architecture (MSA) is an emerging cloud software system, which provides fine-

grained, self-contained service components (Microservices) used in the construction of complex

software systems. Facing the problem that SDLC-driven methods (SDLC: software development life

cycle) are lacking to facilitate the migration of software systems from a traditional monolithic

http://creativecommons.org/licenses/by/3.0

GSKI 2018

IOP Conf. Series: Earth and Environmental Science 234 (2019) 012091

IOP Publishing

doi:10.1088/1755-1315/234/1/012091

2

architecture to MSA. Chen et al [1] proposed a migration process based on SDLC, including all of the

methods and tools required during design, development, and implementation.

Well-designed microservice architecture with better quality relies on clear understanding of related

quality attributes. However, current understanding of quality attributes in microservice architecture is

deficient and not comprehensive. Reference [2] constructed knowledge of quality attributes in

architecture through a Systematic Literature Review (SLR), the exploratory case study and the

explanatory survey. By analyzing the influential factors and the corresponding tactics of related

quality attributes, their research is aiming at providing a comprehensive guide on quality improvement

in microservice architecture.

Mario Villamizar et al [8] presented a cost comparison of a web application developed and

deployed using the same scalable scenarios with three different approaches [5]: 1) a monolithic

architecture, 2) a microservice architecture operated by the cloud customer, and 3) a microservice

architecture operated by the cloud provider. Test results show that microservices can help reduce

infrastructure costs in comparison to standard monolithic architectures. Moreover, the use of services

specifically designed to deploy and scale microservices reduces infrastructure costs by 70% or more.

They also described the challenges that implementing and deploying microservice applications.

Based on IoT Clouds the container virtualization is becoming an even more prominent technology

that allows them to deploy and manage, in a flexible fashion, micro-services within IoT devices. In

reference [4], the authors focused on micro-service reliability in IoT devices and proposed a system

based on container virtualization that allows IoT Clouds to carry out fault-tolerance when a

microservice running on an IoT device fails.

3. Implementation of Service Composition Based On Microservice Architecture

3.1 Description

To reduce the coupling between sub-systems in enterprise information systems, it is normal to split the

system into multiple components, which helps to separate component boundaries and responsibilities.

Programmers could upgraded or maintained the system independently by. The main purpose of

service-oriented functional component is to encapsulate functional components implemented by

different programming languages into services. After that, the client program written in different

programming languages performs cross-language/environment call to the service interface, and the

effect of the functional component service and the cross-language service interface call is in Fig. 1.

3.2 The Principles of Service Composition Solution

In the early stage of enterprise software development, Application normally adopted monolithic

architecture that provides a list of services S (S1, S2...Sx), the schematic of the monolithic architecture

is in Fig. 2, and a group of developers develops the code. As applications expands, more services or

developers would be added, increasing the complexity and time required to launch new features or

improvements.

The complexity of large application is solved by Service-Oriented Architectures [3] solutions,

application is composed of a series of monolithic applications (a1, a2...ax) with each application

providing service through different standard (such as Simple Objects Access Protocols). Some systems

used routing mechanisms, such as Enterprise Service Bus (ESB) [5] to route/send messages between

applications. The SOA strategy allows each application be developed by a team of developers T (T1,

T2…Ty) (which are regularly grouped by business functions) and operated by the operator team O.

While SOA implementations could address the needs of certain companies, they are quite complex,

expensive, and even time consuming [6]. One typical implementation of SOA is ESB, which designed

for effectively support enterprise applications with numerous users. When facing the challenge of

scaling ESB to hundreds of thousands or millions of users, they become the bottlenecks for creating

GSKI 2018

IOP Conf. Series: Earth and Environmental Science 234 (2019) 012091

IOP Publishing

doi:10.1088/1755-1315/234/1/012091

3

high latency and increasing the likelihood of single failure point. Therefore, it is complicated to add or

remove servers to ESB as needed. As for agility, it requires quite a huge amount of configuration in

ESB to feed new needs for end users, which will consume a lot of time.

Consumer 1
C++ Client

Consumer 2
Java Client

Consumer 3
Java Client

Consumer 4
.NET Client

C++ Framework
A

C++ Stub A

Java Stub A

Design A

.NET Stub A

Java Framework
B

C++ Stub B

Java Stub B

DesignB

.NET Stub B

.NET Framework
C

C++ Stub C

Java Stub C

DesignC

.NET Stub C

Figure 1: service-oriented functional component

S1 S2 S3

Sn
Database

Web
Application

Internet

Users

Browser

Front-end
App

Monolithic
 Architecture

Figure 2: Monolithic architecture

As a lightweight subset of the SOA, MSA (Microservice Architecture) absorbs the advantages of

the SOA architecture and avoids the corresponding problems of the monolithic architecture. MSA is a

solution of building applications using a set of microservices. It is composed of multiple services in

the form of separate business units and implemented around the specified business through appropriate

technologies. Each microservice runs in a separate process and relies on independently automatic

deployment mechanism, and forming a high cohesive autonomous unit with clear boundaries;

Microservices communicate through some lightweight communication mechanisms, such as RPC,

HTTP and so on.

It is proposed to turn the application into a set of microservices mS (mS1, mS2 ... mSn), each of

which provides a subset of the services S (S1, S2...Sx). Development team mTi independently

develope and test these microservices using the technology stack (including presentations, services,

GSKI 2018

IOP Conf. Series: Earth and Environmental Science 234 (2019) 012091

IOP Publishing

doi:10.1088/1755-1315/234/1/012091

4

and persistence layers) to be more applicable to services provided by microservices. The team mTi is

also responsible for deploying, extending, operating, and upgrading microservices on the cloud

computing IaaS/PaaS solution. In presentation layer, the service is released that using the

Representational State Transfer (REST) [7]. The schematic diagram of the microservice architecture is

in Fig. 3:

Users

Internet

Gateway
codebase

mS1 mS2

mS3 mSn

mSn Database

Microservice
mSn codebase

Web Application

...

mS1 Database

Microservice
mS1 codebase

Web ApplicationBrowser

Front-end
App Web

Application

Figure 3: Microservice architecture

Spring Cloud is a brand new web framework by the Pivotal team. Its main feature is to simplify the

developing/deploying process. Spring Cloud contains a set of well-functioning and lightweight micro-

service components based on Spring Boot. The key characteristics of Spring Cloud are as follows:

service discovery management, service fault tolerance, service gateway, and service configuration,

load balancing, and messaging. There are also well-tested and mature components in terms of bus and

service tracking.

Hystrix
Turbine

MicroService1

MicroService2

MicroService3

Zuul Proxy
(Eureka Client)

Ribbon

Spring Cloud
Sleuth
Zipkin

Eureka
Server

Spring Cloud Bus

Config Server

GatewayFault
tolerance

Git Repo

Load
Balance

Register
Find

Service Calling

Monitor request
Analysis request

m-service
Communication

Unified
Configuration

Figure 4: The architecture of Spring Cloud

Fig. 4 shows the complete architecture diagram of Spring Cl-oud. Eureka implements the automatic

registration and dis-covery of microservices in Spring Cloud. Zuul is used for dynamic routing and

GSKI 2018

IOP Conf. Series: Earth and Environmental Science 234 (2019) 012091

IOP Publishing

doi:10.1088/1755-1315/234/1/012091

5

request filtering. Ribbon is client-side load balancing based on HTTP and TCP that gets a list of

services from the Eureka Registry. HyStrix is a fuse that improves the system's fault tolerance.

Turbine is a tool introduced to monitor microservice clusters. Feign integrates Ribbon to provide a

declarative HTTP API to clients. Spring Cloud Config provides unified configuration management for

the Spring Cloud framework system, and provides support for the server (Config Server) and the client

(Config Client). The role of the Spring Cloud Bus is to connect the service nodes with a lightweight

message broker (such as RabbitMQ) and broadcast the communication between the dynamic

information of the configuration file and the service. Spring Cloud Sleuth integrates ZipKin to

implement monitoring link analysis of microservices.

Microservice is an advanced architecture, but there are unavoidable drawbacks in terms of system

complexity and continuous integration of services. Therefore, we introduced Docker technology.

Docker is an open source container engine that complies with the Apache 2.0 protocol. It uses

lightweight virtualization technology to achieve resource isolation and package various environment

dependencies and applications to facilitate application porting and deployment. We package the

microservices into separate Docker images, and then push them into the private image repository.

Each time the service deployed, we pull the corresponding image from the private image library, and

the image run according to the scheduled microservice.

3.3 Implementation Technology

Since Spring cloud platform is based on the Java language, to publish programs written in different

languages into microservices with unified communication standards, such as C++, .NET, Python,

Matlab and other languages or tools, we can use the corresponding technology. We decorated the

underlying system as a Java program using technology such as JNI (solving C++ and JAVA

communication problems), inter-process communication, and RPC (Remote Procedure Calling), thus

solving the problem of making functional component service.

Service
A

Service
B

Service
C

Service
D

1 call
B.handle(data)

2 call
C.handle(data)
Asynchronously

3 call
D.handle(data)
Asynchronously

4 Service D
returns

response X

5 Service C
returns

response Y
6 Service B
returns

response (X,Y)

data
(X,Y)

Figure 5: The service composition

Fig 5 illustrates a simple example of service composition，and the example consists of four

services A, B, C and D.

Service A gets data as input, data can be represented by a combination of multiple basic data types

(integer, floating point number) and Complex data types (array), for example: data = (integer, floating

point, byte []); output (X, Y) can be a combination of two basic data types. After the client invokes

the service composition A remotely (A .handle (data)), the internal invoking process of the service is

as follows:

1) Service A calls B.handle (data);

2) Service B calls C.handle (data) asynchronously;

GSKI 2018

IOP Conf. Series: Earth and Environmental Science 234 (2019) 012091

IOP Publishing

doi:10.1088/1755-1315/234/1/012091

6

3) Service B calls D.handle (data) asynchronously;

4) Service C returns response X;

5) Service D return response Y;

6) Service B returns a response (X, Y) after both C and D return a response.

The algorithm used for building the microservice is as follows:

Algorithm for building microservices

1 ∶ mS ← InitMicroServiceList

2 ∶ 𝑡𝑠

← 𝑇ℎ𝑒 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑜𝑓 𝐷𝑒𝑝𝑒𝑛𝑑𝑐𝑦 𝑓𝑜𝑟 𝑀𝑖𝑐𝑟𝑜 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠

3 ∶ 𝑆 ← 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦𝐿𝑖𝑠𝑡

4 ∶ 𝐶 ← 𝐶𝑜𝑑𝑒𝐿𝑖𝑏𝑟𝑎𝑟𝑦

5 ∶ 𝑓𝑜𝑟 𝑠 𝑖𝑛 𝑆

6 ∶ 𝑐 ← 𝑐𝑜𝑑𝑒𝑠 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ 𝑖𝑛 𝐶

7 ∶ 𝑚𝑆. 𝑎𝑑𝑑(𝑐)

8 ∶ 𝑒𝑛𝑑 𝑓𝑜𝑟

9 ∶ 𝑓𝑜𝑟 𝑚𝑆𝑖, 𝑚𝑆𝑗 𝑖𝑛 𝑚𝑆

10 ∶ 𝑖𝑓 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑚𝑆𝑖, 𝑚𝑆𝑗) > 𝑡𝑠

11 ∶ 𝑚𝑆𝑖 = 𝑚𝑒𝑟𝑔𝑒(𝑚𝑆𝑖, 𝑚𝑆𝑗)

12 ∶ 𝑒𝑛𝑑 𝑖𝑓

13 ∶ 𝑒𝑛𝑑 𝑓𝑜𝑟

Application
System 1

Micro service A

Docker Container

Front-
end

Back-
end

Micro service B

Docker Container

Front-
end

Back-
end

Micro service C

Docker Container

Front-
end

Back-
end

Micro service D

Docker Container

Front-
end

Back-
end

Database Database

Application
System 2

Figure 6: Microservice deployed in Docker

Fig. 6 shows the frame diagram of the microservices section after using Docker. These four

microservices A, B, C, and D are independently deployed in the Docker container, the microservice A

initiates a request to invoke the microservice B, and the microservice B asynchronously invokes the

microservices C and D. This creates a complex and complete business process. We split a complex

application system into multiple services with a single function and simple business logic. Each

microservice is registered in Eureka Server, and microservices can be invoked through a declarative

RESTful API.

4. Experimental Evaluations

Our experimental environment consists: Xeon processors, 16GB RAM, for microservice, the machine

runs Docker 1.6 and Spring Cloud Dalston.SR5 on Linux 3.9, and each Container host runs separately.

GSKI 2018

IOP Conf. Series: Earth and Environmental Science 234 (2019) 012091

IOP Publishing

doi:10.1088/1755-1315/234/1/012091

7

In addition, we choose WSO2 product as Enterprise Service Bus environment. To test and compare

the performance of all the three architectures. We measured that the time consumption for service

includes (1) time used for requesting a service, (2) time consumed for receiving a response message (3)

time used for parsing the service response message and description. In order to obtain accurate data,

we launch multiple repeated invocation requests.

As mentioned before, we refactored the enterprise software architecture into uncoupled

microservices using Spring Cloud Framework, and deployed them on servers through Docker

technology. In this case study, we used four microservices as experimental conditions. The

microservice A of the enterprise is responsible for inquiring about the cost and selling price of

enterprise products. Microservice B is used for the statistics of the sales volume of related products.

Microservice C product overview information, such as the profit of the quarter products. Microservice

D specify the next quarter's production plan according to the profit/ loss information.

Figure 7: Time consumption of three scenarios

In order to get the benchmark performance from each of these programs, we run them repeatedly

under conditions where the system is not loaded. Under the different number of repeated tests of the

program, we got the experimental data. The result of performance test is shown as below. It is worth

mentioning that the time consumption of microservice A represents the final performance of the whole

microservice scheme.

Table 1: Average running time of microservices

Service A B C D

Average

Time

61.24ms 50.56ms 20.41ms 17.68ms

Table 2: Average running time of monolithic architecture and ESB

Architecture Monolithic ESB

Average

Time

56.25ms 63.42ms

By analyzing the data in Table 1 and 2, we conclude that the average time overhead of monolithic

architecture is minimal due to the nearly zero internal communication cost, and its average running

time is 63.24ms. As for the microservice architecture and ESB, the microservice architecture has an

GSKI 2018

IOP Conf. Series: Earth and Environmental Science 234 (2019) 012091

IOP Publishing

doi:10.1088/1755-1315/234/1/012091

8

average time loss of 54.25ms and is better than ESB's 65.42ms, which makes it very reasonable to use

the microservice architecture to reconstruct enterprise business processes.

5. Conclusion

As cloud-computing technology evolves from concept to implementation, it becomes a new choice of

providing deployment, providing software developers with flexible software construction methods on

demand. In this deploying model, traditional integrated architecture or even SOA model cannot cope

with much more frequent software updates and shorter delivery cycles, and the microservice

architecture model that emerges with the development of Docker container technology can better

response to the need for frequent delivery. Application platform built by Spring Cloud and Docker

could fully demonstrates the advantages of the micro-service architecture, and implements component-

oriented and service-oriented management of services, which enhances the continuous integration and

expansion capabilities of services. As technology advances, microservices architecture systems will be

adopted more, and microservices systems built based on Spring Cloud and Docker will be the best

solution for microservices. Of course, with the advancement of technology, changes in ideas, the idea

of microservice architecture still needs constant exploration and improvement.

6. Acknowledgement

This work is partially supported by National Natural Science Fund (61872138)

This work is partially supported by Natural science fund project in Hunan province (2016JJ2058).

7. References

[1] Fan, C. Y., & Ma, S. P. (2017). Migrating Monolithic Mobile Application to Microservice

Architecture: An Experiment Report. IEEE International Conference on Ai & Mobile Services

(pp.109-112). IEEE

[2] Li, S. (2017). Understanding Quality Attributes in Microservice Architecture. Asia-Pacific

Software Engineering Conference Workshops (pp.9-10). IEEE Computer Society

[3] Wang, H., Zou, S., Lin, J., Feng, G., & Lv, H. (2016). A Dependable Service Path Searching

Method in Distributed Virtualized Environment Using Adaptive Bonus-Penalty Micro-

Canonical Annealing. IEEE, International Conference on Cyber Security and Cloud Computing

(pp.530-539). IEEE.

[4] Celesti, A., Carnevale, L., Galletta, A., Fazio, M., & Villari, M. (2017). A Watchdog Service

Making Container-Based Micro-services Reliable in IoT Clouds. IEEE, International

Conference on Future Internet of Things and Cloud (pp.372-378). IEEE.

[5] Guidi, C., Lanese, I., Mazzara, M., & Montesi, F. (2017). Microservices: a language-based

approach.

[6] Ma, S. P., Lin, H. J., Lan, C. W., Lee, W. T., & Hsu, M. J. (2018). Real World RESTful Service

Composition: A Transformation-Annotation-Discovery Approach. IEEE, International

Conference on Service-Oriented Computing and Applications (pp.1-8). IEEE.

[7] Wang, S., Urgaonkar, R., Chan, K., He, T., Zafer, M., & Leung, K. K. (2015). Dynamic service

placement for mobile micro-clouds with predicted future costs. IEEE International Conference

on Communications (Vol.28, pp.5504-5510). IEEE.

[8] Villamizar, M., Garcés, O., Ochoa, L., Castro, H., Salamanca, L., & Verano, M., et al. (2016).

Infrastructure Cost Comparison of Running Web Applications in the Cloud Using AWS

Lambda and Monolithic and Microservice Architectures. Ieee/acm International Symposium on

Cluster, Cloud and Grid Computing (pp.179-182). IEEE.

