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Abstract. Reaction turbines, of which Francis turbines, constitute a large proportion of low and 

medium head turbines installed in hydropower plants. Managing these machines represents a 

real challenge in terms of efficiency, competitiveness and demands on the energy market. 

Turbines runner blades exhibit loss of performance from damage due to several reasons. One 

common source of damage is erosion due to the cavitation phenomenon. Indeed, at a given 

operating region, rapid changes of velocity can create bubbles in the water flow due to local low 

pressures. When cavitation bubbles reach pressure recovery, they collapse and may induce wear 

or erosion in these regions. Even if this phenomenon has been intensively studied in the past 

decades, cavitation erosion is not fully understood as it is driven by several parameters such as 

flow dynamic, turbine design, environment, or material properties. Some of these parameters can 

be studied in laboratory to compare materials resistance between each other. This article aims to 

model the cavitation by a stochastic model using erosion experimental data observed in the 

laboratory. The benefit of such models is to consider both the uncertainties and natural 

fluctuations of the phenomenon. With the proposed framework, the study will highlight the 

differences observed in cavitation erosion experiments of two common materials used to 

manufacture Francis’s runners. This study is the first step in a project aiming at the prediction of 

turbines mass loss due to cavitation erosion on actual operating Francis turbines. 

1.  Introduction 

Over the last few years, public and governmental policies have focused on increasing the production of 

energy from renewable sources to meet environmental objectives. These energy sources, such as solar 

or wind power, are known to be unpredictable and intermittent which may disturb the power network. 

Besides in the electricity market, sudden changes in the power demand can occur in the electricity 

market, forcing energy operators to adapt their production. Hence, to ensure the electrical grid stability, 

energy producers must rely on utilities capable of smoothing the power supply. Because of the relatively 

large range of operations of Francis units, they are particularly suitable to regulate power supply [1]. 

Meanwhile, depending on the operating region, cavitation, which represents an undesirable phenomenon, 

may appear at several locations of the Francis’s runner [2]. This may occur when the local static pressure 
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of water reaches below its vapor pressure at local temperature. For high velocity regions of the runner, 

the local low pressure can result in the formation of small vapor bubbles which then collapse suddenly. 

If the created voids implode on a solid surface, such as a runner blade, the surface ends up with pitting 

corrosion [3]. This results in production of noise, vibration, the modification of the surface geometry of 

the blade and its surface condition. At the end it may lead to loss in the turbine overall efficiency. Over 

time, a Francis runner’s exposed to erosive cavitation will lose material which requires costly periodic 

inspections and repairs. In order to optimize maintenance operations and to reduce periods of outage, 

there is a need to predict the erosive cavitation in hydro turbines. 

A cavitation free operation is one of the most important issues for hydroelectric power plants [4]. 

Thus, turbine manufacturers must contractually prove the absence of cavitation for nominal operating 

points using CFD simulations. This work can be achieved by computing the dimensionless Thoma 

number (𝜎𝑖) which represents cavitation properties of the fluid 

𝜎𝑖 =
𝑝𝑎𝑡𝑚 − 𝜌𝑔𝐻𝑠 − 𝑝𝑖

𝜌ℎ𝐻
 (1) 

where 𝑝𝑎𝑡𝑚  is the atmospheric pressure, 𝜌 the fluid density, 𝑔 the gravitational acceleration, 𝐻𝑠  the 

suction head of the turbine, 𝐻 the net head and 𝑝𝑖 the local static pressure [3]. Plant Thoma number (𝜎𝑝) 

represents the cavitation properties of the plant, which has a vapor pressure (𝑝𝑣) corresponding fluid 

temperature 

𝜎𝑝 =
𝑝𝑎𝑡𝑚 − 𝜌𝑔𝐻𝑠 − 𝑝𝑣

𝜌𝑔𝐻
 (2) 

To ensure cavitation free operation, Thoma number must be lower than plant Thoma number at any 

location of the runner: 𝜎𝑝 < 𝜎𝑖 . Thus, optimization of hydraulic turbines design aiming to reduce 

cavitation is an active area of research [3,5,6]. While good progress has been made during the last decade, 

CFD simulations still face challenges when it comes to predicting cavitation erosion. Indeed, recent 

studies aiming to forecast cavitation erosion have shown satisfying qualitative results but stress that 

future work must be done to produce reliable quantitative ones [5]. Numerical models can predict the 

blade regions affected by erosive cavitation but are still not able to produce reliable results about the 

cavitation intensity and then the resulting material loss [6].  

In this paper, we propose a different approach dealing with cavitation; instead of trying to reduce 

cavitation phenomena encountered in Francis’s runners, we focus on modelling the resulting degradation. 

For this purpose, we use stochastic models and experimental data sets which allows to predict the future 

degradation state of the runner. Indeed, because of the replacement cost of such components and the 

necessity to operate them off design specifications, predicting their remaining useful lifetime represents 

a real asset for energy producers when it is time to schedule inspection and maintenance operations. As 

a proof of concept, the present study focuses on laboratory cavitation experimental data. This paper is 

structured as follows. First, the vibratory cavitation experiment is described to introduce the terminology 

used in the next sections. In section 2 we present the degradation model using non-homogeneous gamma 

process and its benefits compared to regression models. Next in section 4 we apply the degradation 

model on a real set of vibratory cavitation data. Finally, the conclusions of the results as well as furthers 

works are given in section 5. 

2.  Cavitation Test 

The case study presented in the following sections relies on data from vibratory cavitation experiments 

performed in the laboratory. This experimental method, referred to as ASTM G32-06 standard, is mainly 

designed “to compare the cavitation erosion resistance of different materials [and / or] to study in detail 

the nature and progress of damage in a given material” [7]. Even if the experimental data cannot be 

directly transposed to hydraulic machines (due to the way the cavitation is generated in the test), the 

degradation mechanism is believed to be similar to the one observed in Francis’s runners subject to 

cavitation erosion. In this study, cavitation erosion experiments have been performed in ultrasonic 
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equipment according to ASTM G32 standard. The specimens were held stationary below a vibrating 

horn at a distance of 0.5 ± 0.02 mm (indirect method). The frequency of vibration and the peak to peak 

displacement amplitude of the horn were 20 kHz and 50°µm. The experimental apparatus is shown in 

figure 1. 

According to the process described in the ASTM standard, the test must follow the steps below: 

 The specimen is immersed into a container filled with test liquid maintained at a specified 

temperature during the operation. 

 The specimen is weighted accurately before testing begins and again during periodic 

interruptions of the test, in order to obtain a history of mass loss versus time. 

 

 

Figure 1. Schematic of vibratory 

erosion cavitation apparatus [7]. 

 

The following definitions, developed in the ASTM standard, will be used in the remaining part of 

this paper: 

 Nominal incubation time (A): the intercept of the time or exposure axis of the straight-line 

extension of the maximum-slope portion of the cumulative erosion-time curve; while this is not 

a true measure of the incubation stage, it serves to locate the maximum erosion rate line on the 

cumulative erosion versus time coordinates. 

 Maximum erosion rate (B): the maximum instantaneous erosion rate in a test that exhibits such 

a maximum followed by decreasing erosion rates. 
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Note – A = nominal incubation time; tan(B) = 

maximum erosion rate 

 

 

 

 

 

 

 

 

 

 

Figure 2. Characteristic stages of the erosion 

rate-time pattern, and parameters for 

representation of the cumulative erosion-time 

curve, adapted from [7]. 

 

3.  Stochastic Model 

3.1.  Degradation Model 

To describe degradation observations, two principal methods can be used by an analyst: regression 

models and stochastic processes. If we note 𝑥𝑖,𝑗 the degradation level associated to test 𝑗 at instant 𝑡𝑖,𝑗, 

it is considered in regression models as an independent variable which is not influenced by previous 

degradation levels 𝑥𝑘,𝑗, 𝑘 < 𝑖. This means the way degradation data is collected and organized in paths 

is overlooked as well as the dynamic of degradation and its cumulative property over the time. In contrast, 

stochastic processes study the degradation path variability by considering the cumulative property of 

degradation.  Thus, because of several sources of uncertainties and the natural variability of the 

cavitation phenomenon, the use of such probabilistic approach is legitimate. Moreover, a model update 

can be performed with stochastic processes using inspection results to provide more realistic predictions. 

Particularly, as pointed in the survey made by Noortwijk, Markov type of stochastic processes are well 

suited for modelling the temporal variability of degradation [8]. The most classical Markov processes 

used in reliability are the Wiener (also known Brownian motion) and gamma processes. A characteristic 

feature of the first one – in the context of degradation – is that the degradation alternately increases and 

decreases over time (non-monotone locally), even with an increasing trend (Brownian motion with drift). 

On the contrary, gamma process has only non-negative increments over time which means the 

degradation is strictly monotone. Indeed, gamma process paths can be thought as the accumulation over 

time of an infinite number of tiny increments. This feature makes the gamma process suitable to model 

gradual damage accumulating over time as observed in our cavitation data (see figure 3) [8].  

First, let us introduce the mathematical basis of the gamma process, based on the gamma distribution. 

A random quantity 𝑋 has a gamma distribution, denoted 𝐺𝑎(𝑣, 𝑢), with 𝑣, 𝑢 > 0 the shape parameter 

and the rate parameter respectively, if its probability density function is given by: 

 

𝑓𝑋(𝑥) = 𝐺𝑎(𝑥|𝑣, 𝑢) =
𝑢𝑣

Γ(𝑣)
𝑥𝑣−1 e−𝑢𝑥𝐼ℝ+

∗ (𝑥), 

 

(3) 
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where 𝐼𝐴(𝑥) = 1  for 𝑥 ∈ 𝐴  and 𝐼𝐴(𝑥) = 0  for 𝑥 ∉ 𝐴 , and Γ(𝑎) =  ∫ 𝑧𝑎−1𝑒−𝑧𝑑𝑧
+∞

𝑧=0
 is the gamma 

function for 𝑎 > 0 . Note that another standard parameterization of the gamma distribution in the 

literature is (𝛼, 𝛽) with 𝛼 = 𝑣 and 𝛽 =
1

𝑢
. In that case, 𝛽 is called scale parameter and 𝛼 is called shape 

parameter. The gamma process {𝑋(𝑡), 𝑡 ≥ 0} with shape function 𝑣(𝑡) > 0 and rate parameter 𝑢 > 0 

has the following properties: 

 

 𝑋(0) = 0, 

 𝑋(𝜏) − 𝑋(𝑡) ~ 𝐺𝑎(𝑣(𝜏) − 𝑣(𝑡), 𝑢) for all 𝜏 > 𝑡 > 0, 

 𝑋(𝑡) has independent increments. The future degradation is independent of the past degradation. 

 

The two principal choices for shape function 𝑣(𝑡) are: the power shape function, 𝑣(𝑡) = 𝑣𝑡𝑏 with 

𝑣, 𝑏 > 0  and the exponential shape function 𝑣(𝑡) = 𝑒−𝑣𝑡 − 1, with 𝑣 > 0 [9]. Empirical studies and 

engineering knowledge show the expected degradation over time is often proportional to a power law 

[8]. From an engineering point of view, it expresses how the mean degradation increases over time. 

When 𝑏 = 1 , the gamma process is said homogeneous; for 𝑏 ≠ 1 , the gamma process is non-

homogeneous. Considering the degradation evolution during our cavitation test, we decided to use the 

gamma shape function expressed with a power law. 

 

The expectation and the variance of gamma process are given respectively in equation (4). 

𝔼(𝑋(𝑡)) =
𝑣(𝑡)

𝑢
=

𝑣𝑡𝑏

𝑢
,         𝕍(𝑋(𝑡)) =

𝑣(𝑡)

𝑢2
=

𝑣𝑡𝑏

𝑢2
 (4) 

In our case, 𝑋(𝑡)  denotes the cumulative mass loss of material over time 𝑡  during a vibratory 

cavitation test. 

3.2.  Parameter Estimation for the Gamma Process 

We introduce here some notations. We observe 𝑚 independent and identically distributed copies of the 

stochastic process as described above. In the case study, 𝑚 expresses the number of tests performed and 

𝑛𝑗 the number of successive measurements taken during test 𝑗, 1 ≤ 𝑗 ≤ 𝑚. Then, the 𝑗th path is observed 

𝑛𝑗 times at the instants 𝑡0 < 𝑡1,𝑗 < ⋯ < 𝑡𝑛𝑗,𝑗. We adopt the following notations in the remaining of the 

paper, for all 1 ≤ 𝑗 ≤ 𝑚: 

- 𝑡0,𝑗 = 𝑡0 = 0; 

- 𝑥0,𝑗 = 0, at 𝑡0 there is no degradation; 

- 𝛿𝑖,𝑗 = 𝑥𝑖,𝑗 − 𝑥𝑖−1,𝑗, the increment of degradation between inspections times 𝑡𝑖−1,𝑗 and 𝑡𝑖,𝑗; 

- 𝑫𝑜𝑏𝑠 = ⋃ ⋃ {(𝑡𝑖,𝑗, 𝑥𝑖,𝑗)}
𝑛𝑗

𝑖=1
𝑚
𝑗=1 , the set of all observed degradation data. 

 

Degradation model parameters can then be estimated using the maximum likelihood estimator 

(MLE). The gamma process likelihood function ℒ is given in equation (5). This method consists in 

choosing the model parameters' values which maximize the likelihood function ℒ given observed data. 

Intuitively, this selects the parameter values that make the data most probable. For convenience, we 

prefer to maximize the log-likelihood function ℓ in equation (6) using optimization methods. 

 

ℒ(𝑢, 𝑣, 𝑏|𝑫𝑜𝑏𝑠) = ∏ ∏
𝑢

𝑣[𝑡𝑖,𝑗
𝑏  −𝑡𝑖−1,𝑗

𝑏 ]

Γ(𝑣[𝑡𝑖,𝑗
𝑏  − 𝑡𝑖−1,𝑗

𝑏 ])
𝛿

𝑖,𝑗

𝑣[𝑡𝑖,𝑗
𝑏  −𝑡𝑖−1,𝑗

𝑏 ]−1
e−𝑢𝛿𝑖,𝑗

𝑛𝑗

𝑖=1

𝑚

𝑗=1

 (5) 
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ℓ(𝑢, 𝑣, 𝑏|𝑫𝑜𝑏𝑠) = log(ℒ(𝑢, 𝑣, 𝑏|𝑫𝑜𝑏𝑠))

= ∑ ∑ 𝑣[𝑡𝑖,𝑗
𝑏 − 𝑡𝑖−1,𝑗

𝑏 ] log(𝑢) − log[Γ(𝑣[𝑡𝑖,𝑗
𝑏 − 𝑡𝑖−1,𝑗

𝑏 ])]

𝑛𝑗

𝑖=1

𝑚

𝑗=1

+ (𝑣[𝑡𝑖,𝑗
𝑏 − 𝑡𝑖−1,𝑗

𝑏 ] − 1) log(𝛿𝑖,𝑗) − 𝑢𝛿𝑖,𝑗 

 

 

 

(6) 

By differentiating the log-likelihood function ℓ with respect to the three variables, the MLE (𝑢̂, 𝑣, 𝑏̂) 

of (𝑢, 𝑣, 𝑏) consists in the solution of the follow set of equations:  

 

𝑢̂ =  𝑣  
∑ ∑ [𝑡𝑖,𝑗

𝑏̂ − 𝑡𝑖−1,𝑗
𝑏̂ ]

𝑛𝑗

𝑖=1
𝑚
𝑗=1

∑ ∑ 𝛿𝑖,𝑗
𝑛𝑗

𝑖=1
𝑚
𝑗=1

= 𝑣
∑ 𝑡𝑛𝑗,𝑗

𝑏̂𝑚
𝑗=1

∑ 𝑥𝑛𝑗,𝑗
𝑚
𝑗=1

 (7) 

∑ ∑[𝑡𝑖,𝑗
𝑏̂  − 𝑡𝑖−1,𝑗

𝑏̂ ] {𝜓 (𝑣 [𝑡𝑖,𝑗
𝑏̂  − 𝑡𝑖−1,𝑗

𝑏̂ ]) − log (𝛿𝑖,𝑗)}

𝑛𝑗

𝑖=1

𝑚

𝑗=1

=  ∑(𝑡𝑛𝑗,𝑗
𝑏̂ )log (𝑣̂

∑ 𝑡𝑛𝑗,𝑗
𝑏̂𝑚

𝑗=1

∑ 𝑥𝑛𝑗,𝑗
𝑚
𝑗=1

)

𝑚

𝑗=1

 , (8) 

∑ ∑ 𝑣 [𝑡𝑖,𝑗
𝑏̂ log(𝑡𝑖,𝑗) − 𝑡𝑖−1,𝑗

𝑏̂ log(𝑡𝑖−1,𝑗)] [𝜓 (𝑣 [𝑡𝑖,𝑗
𝑏̂ − 𝑡𝑖−1,𝑗

𝑏̂ ]) − log(𝛿𝑖,𝑗)]

𝑛𝑗

𝑖=1

𝑚

𝑗=1

= ∑ (𝑣𝑡𝑛𝑗,𝑗
𝑏̂ log (𝑡𝑛𝑗,𝑗))

𝑚

𝑗=1

log (𝑣̂
∑ 𝑡𝑛𝑗,𝑗

𝑏̂𝑚
𝑗=1

∑ 𝑥𝑛𝑗,𝑗
𝑚
𝑗=1

)   

(9) 

where the function 𝜓(𝑥) is the derivative of the logarithm of the gamma function, also called di-

gamma function: 

𝜓(𝑥) =  
Γ′(𝑥)

Γ(𝑥)
=

𝜕 log Γ(𝑥)

𝜕𝑥
 (10) 

Hence, estimators 𝑣 and 𝑏̂ can be either numerically computed by solving the last two equations or 

by computing the MLE with respect to 𝑣 and 𝑏̂. Then, 𝑢̂ can be computed using equation (7).  Both 

methods are numerical and imply an optimization using proper computing tools.  

3.3.  Simulation 

One benefit of modelling a component degradation is the ability to predict its future deterioration state. 

Hence, for a given degradation threshold 𝜌, the remaining useful lifetime RUL of a component needs to 

be computed. If 𝑋(𝑡) represents the degradation accumulated by a component on the interval [0, 𝑡], we 

consider the component in failed state as soon as the degradation is beyond threshold 𝜌. We call the 

time-to-failure of the component, the hitting time 𝜏𝜌 expressed in equation (11). 

𝜏𝜌 = 𝑖𝑛𝑓{𝑡 ≥ 0 ∶ 𝑋(𝑡) ≥ 𝜌} (11) 

For estimated degradation paths, 𝜏𝜌,𝑗  corresponds to the time 𝑡𝑖,𝑗  the degradation level 𝑋(𝑡𝑖,𝑗) 

crosses threshold 𝜌. Computing all 𝜏𝜌,𝑗, 1 ≤ 𝑗 ≤ 𝑚, allows then to determine asymptotically the hitting 

time distribution of the component degradation level of a large number of simulated paths. We refer the 

reader to [8,9] for further details on this topic.  

If we want to generate values of the process on the discrete time range [0, 𝑇], at the instants 𝑡𝑖 = 𝑖 ×
Δ𝑇, 𝑖 = 1, … , 2𝑘 , where Δ = 2−𝑘 , 𝑘 ∈ ℕ+

∗ , an efficient method to simulate gamma process sample paths 
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(with respect to the estimated parameters (𝑢̂, 𝑣, 𝑏̂)) is the gamma sequential sampling (GSS) presented 

in the following algorithm [10].  

 

𝐺(0) = 0;  

ℎ = 2−𝑘𝑇; 

For 𝑖 = 0 to 2𝑘 , 

Generate 𝑄 ~ 𝐺𝑎(𝑣[(𝑖 + 1)ℎ]𝑏̂ − 𝑣[𝑖ℎ]𝑏̂, 𝑢̂); 

𝐺(𝑖ℎ) = 𝐺((𝑖 − 1)ℎ) + 𝑄;  
Next 𝑖 

4.  Case Study 

4.1.  Materials Tested 

In the present study, the materials used are ASTM A27 and E309L. These two materials have been 

chosen because of their common use in the fabrication process of Francis’s runners. ASTM A27 has 

been extensively used to build runners since the 1950’s. The samples used (1-inch diameter cylinder) 

have been extracted from a blade casting. Then, E309L is nowadays most commonly used for welding 

material to repair fatigue cracks or cavitation damages in hydraulic turbines. The samples have been 

extracted from a bulk sample made of several welding beads. The vibratory cavitation test has been 

performed on these two materials according to the process described in section 2. To capture the 

variability of the experimental process and material properties, two replications have been done for 

E309L and at least one for ASTM A27. It results is a total of 49 measurements for E309L and 25 for 

ASTM A27. Because of limited available data, the analyst must be aware of the larger parameter 

estimation uncertainties associated with smaller datasets.  

From an industrial point of view, we decided to focus on the acceleration stage (as denoted in the 

ASTM vibratory cavitation test presented above), as the incubation stage is not currently observed in 

the vibratory and acoustic apparatus used for cavitation monitoring systems. Indeed, even if, on the one 

hand, CFD simulations face difficulties to estimate the cavitation intensity on real operating turbines, 

on the other hand, experimental knowledge implies that cavitation intensity occurring in real turbines is 

probably much higher than the one generated in the laboratory with vibrating test equipment. The 

differences of cavitation intensities observed can partially explain why the incubation stage is not seen 

in the degradation dynamic of real prototypes. From this perspective, only the acceleration stage was 

modeled. Then, incubation time 𝑡𝑖𝑛𝑐,𝑗 for each test 𝑗 has been graphically determined with the slope of 

the degradation curve (as detailed in the ASTM vibratory cavitation standard). The results are shown in 

table 1. Degradation path results are shown in figure 3. Incubation and acceleration stages are 

represented with the darker and lighter areas respectively. 

 

Table 1. Incubation time 𝑡𝑖𝑛𝑐,𝑗 for vibratory cavitation tests performed on usual 

materials. 
   

Test number 
Material 

ASTM A27 E309L 

1 75 min 150 min 

2 105 min 180 min 

3 - 180 min 
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Figure 3. Degradation path results for E309L material. 

 

For simplicity matters and to make data consistent with MLE equations, acceleration stage datasets 

have been shifted to have 𝑡0,𝑗 = 𝑡𝑖𝑛𝑐,𝑗 and 𝑥0,𝑗(𝑡0,𝑗). This transformation has been done shifting the 

coordinates origin to 𝑡𝑛𝑒𝑤,𝑗 = 𝑡𝑖𝑛𝑐,𝑗 along the time axis and 𝑥𝑛𝑒𝑤,𝑗 = 𝑥(𝑡𝑛𝑒𝑤,𝑗) along the degradation 

axis. 

4.2.  Statistical Analysis 

As pointed out in the previous section, regression models allow to perform quick statistical analysis 

which is useful to determine initial guess in the optimization scheme used to perform MLE. Four classic 

regression models have been tried on our degradation data: logarithmic, linear, polynomial (order 2 and 

3) and power law using R software. The power law model 𝑋(𝑡) = 𝑎𝑡𝑐 shows the best fit according to 

AIC (Akaike Information Criterion estimates relative quality of statistical models for a given dataset 

[11]) values with a power 𝑐 = 1.15 > 1 statistically significantly and has been used to perform MLE 

optimization.  

4.3.  Parameter Estimation  

Equation (7) has been used to express 𝑢̂ with respect to estimated parameters 𝑣 and 𝑏̂. Indeed, instead 

of performing the MLE on the three gamma process parameters, the log-likelihood function ℓ has been 

maximized only with respect to parameters 𝑣  and 𝑏̂  which reduces optimization difficulties (one 

dimension has been removed in the log-likelihood function ℓ). Initial guess on 𝑏̂ parameter is taken from 

previous statistical analysis results. The Optimization and Root Finding library of Scipy 

[12] has been used to perform the MLE. To avoid numerical issues due to the gamma function evaluation 

encountered in equation (9), time datasets have been multiplied by a 𝑘 factor to numerically decrease 

the value of time increments since Γ(𝑛 + 1) = 𝑛! for 𝑛 ∈ ℕ may result in overly large values of Γ(𝑥). 

For this study, we took 𝑘 = 1/200. For consistent results and comparison matter, time transformation 

must be done for all datasets and 𝑘-factor must remain constant in the whole study.  

Two shape functions have been studied in this section. First, we took the simpler case with 𝑣(𝑡) =
𝑣𝑡, the linear shape function (or 𝑏 = 1 in 𝑣(𝑡) = 𝑣𝑡𝑏). It supposes the degradation speed is constant 

over time. Then we used non-homogeneous shape function 𝑣(𝑡) = 𝑣𝑡𝑏 , 𝑏 ≠ 1. MLE has been computed 

for the two shape functions 𝑣(𝑡) to estimate gamma process parameters in the two cases.  

 

4.4.  Simulation – Model Comparison 
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A convergence study on the mean and variance of simulated paths has been performed to determine the 

necessary number of paths 𝑚 to reach an asymptotic behaviour. This study showed that the asymptotic 

behaviour is reached for more than 8,000 paths. In figure 4, 10,000 paths have been simulated over 

discrete time [0, 1500] min. An arbitrary degradation threshold (dashed black line in figure 4) has been 

set to 100 𝑚𝑔  to illustrate the RUL computation using simulated paths. Probability densities of 

degradation levels at times 360, 600 and 960 min have been computed using simulated paths and are 

shown in figure 5. The black dots in figure 5 represent the experimental degradation levels at 360, 600 

and 960 min respectively for the three performed tests. Figure 6 shows probability densities of hitting 

time to the threshold 𝜌 = 100 𝑚𝑔. 

 
Figure 4. a) Homogeneous and b) Non-homogeneous gamma process simulation at acceleration 

stage – 10,000 simulated paths. Black lines represent experimental degradation paths. 

 

 
Figure 5. Probability densities of degradation level at 360, 600 and 960 min for a) Homogeneous 

and b) Non-homogeneous gamma process simulation. 

 

 
Figure 6. Probability densities of hitting times for 𝜌 = 100 𝑚𝑔  a) Homogeneous and b) Non-

homogeneous gamma process simulation. The kernel density estimation is given by the grey curve. 

 

The results in figure 4 and 5 show a better modeling using non-homogeneous shape parameter. MLE 

gives in this case a power 𝑏̂ = 1.13 which is consistent with the regression results using power law 

model (estimates of rate and shape parameters are respectively 𝑢̂ = 13.1, 𝑣 = 209  for non-

homogeneous gamma process). In figure 5, we can observe that the probability densities of non-
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homogeneous gamma process simulation paths are more centered on experimental degradation levels 

and the range is tighter than the ones found for homogeneous gamma process. It reflects the degradation 

dynamic is better modelled with non-homogeneous gamma process.  

5.  Conclusion 

This paper shows a stochastic model for vibratory cavitation test modelled with homogeneous and non-

homogeneous gamma process. This model is suitable for a cumulative and monotone degradation such 

as erosive cavitation. Paths simulations have been computed to compare and graphically validate gamma 

process parameter estimations. This work is the first step of prediction of erosive cavitation encountered 

in Francis’s runner using stochastic models. Future work must be done to quantify parameters estimation 

uncertainties. For this purpose, (non-)parametric bootstrap technique will be studied [13]. Because of 

the small data set and the availability of other sources of information about cavitation erosion, a 

Bayesian framework should be well suited to combine multiple sources of information [14]. Such 

framework would make it possible to also include information like expert knowledge, monitoring data 

and results from the numerical simulation. 
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