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Abstract. Deep-seated processes in the tectonosphere of geosynclines are analyzed in terms of 

the advection-polymorphism hypothesis. It has been shown that the said hypothesis makes it 

possible to explain, without resorting to numerical tailoring, major events in geological history 

(formation of the sedimentary veneer, magmatism, temperatures prevailing at large depths), as 

well as anomalies of the heat flow, seismic wave velocities, gravity field, and electrical 

conductivity. 

1. Introduction 

The available data point to a great similarity in the evolution of Kamchatka and the Carpathians. Two 

zones have also been identified in Kamchatka: The Alpine geosynclinal process started somewhat 

earlier in the western than in the eastern zone. It is precisely for the latter that we have constructed a 

very detailed three-dimensional velocity model of the crust and upper mantle (down to 200 km; the 

model is one-dimensional for larger depths). In the same area, deep geoelectrical surveys have been 

carried out, and numerous petrological data are available. In addition to Eastern Kamchatka, the 

velocity model also covers the deep-sea trench and the northwestern plate margin of the Pacific Ocean. 

These particular circumstances have prompted the choice of the region for studies described below.  

The schematic pattern of deep-seated processes and the evolution of the thermal model at the 

margin of the Pacific Ocean northwestern plate (east of bearing picket 240 on the profile) matches the 

pattern described by Gordienko [9], and will not be dealt with in this paper. The resulting deep-seated 

T values are incorporated in the general model (figure 1). Processes in the western Kamchatka 

geosyncline (west of bearing picket 0) have also been simulated and their effect has been taken into 

account in the thermal model on the profile.  

The construction of the pattern of deep-seated processes in Kamchatka resembles a similar 

procedure performed for the Carpathians. It has been assumed that the widths of the zones of western 

and eastern Kamchatka are almost the same: about 240-250 km (i.e., n-tuple size of a QTA; four 

quanta of tectonic action are located nearby). In the west, the process started 140 million years ago and 

ended 60 million years ago. In the east, the estimates are 120 and 20 million years ago, respectively 

[13, 14, 12 and others]. At the eastern end of the profile the development of the process is markedly 

affected by events beneath the oceanic plate, while at the western end – by events within Early 

Alpides. Migrations of the material occurred from depth intervals where QTAs might have formed (in 

other words, a partial melting layer had been in place by the time of QTA formation) into depth 

intervals above the asthenosphere, as is standard for the geosynclinals process: 1) 120 million years  
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Figure 1. Eastern Kamchatka: Elements of geological structure and layout of mantle velocity profiles.  

1 – Activated portion of the Sea of Okhotsk plate; 2 – young effusive rocks; 3 – anticline axis; 4 – 

synclinal axis; 5 – major faults; 6 – trench axis; 7—profiles along which velocity models were built 

with bearing pickets on them (see below); 8 – composite interpretation profile; 9 – profiles along 

which density models were constructed. 

ago at bearing pickets 0-100 from the depths of 330-480 km and at pickets 100-200 from the depths of 

260-460 km to the depths of 160-220 km; 2) 80 million years ago at pickets 380-480 km and at pickets 

100-170 km – from the depths of 180-260 km to the depths of 100-160 km; 3) 20 million years ago at 

pickets 0-80 from the depths of 120-190 km, at pickets 80-120 – from the interval of 120-180 km, at 

pickets 120-160 – from the depths of 140-180 km, and at pickets 180-240 – from the depths of 440-

480 km to the depths of 40-100 km. The times of QTAs’ ascent have been estimated approximately, 

and a more detailed analysis of the geosyncline’s geological history may help further specify those age 

intervals. At all stretches of the profile (except for the easternmost length, where the crust is thin), the 

final stage of the process is further complemented by intrusions into the crust to depths of about 20-40 

km. Over recent millions of years, the territory of Kamchatka has been involved in contemporary 

active processes. In the model, the activation was represented by transport into the crust of the melt 

from the residual asthenosphere at bearing pickets 20-0 and 40-80, something that happened 5 and 0.5 

million years ago [14 and others]. Each displacement of the material resulted in the formation of 

anomalous temperature zones of dissimilar signs at different depths. They were analyzed as 

nonstationary three-dimensional heat sources whose effect was calculated for the entire interval of 

time from their emergence to present time. Anomalous temperatures were summed up with the 

background temperature that had existed prior to the active process. Kamchatka’s pre-geosynclinal 

history has not been properly studied, and for that reason a thermal model constructed for other 

Alpides was used to represent the background. 
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Figure 2. Thermal model (isotherms in 

o
C) along the profile. The diagram at the top is a recent model, and the 

diagram at the bottom reflects the situation that prevailed 100 million years ago. Partial-melting layers are shown 

in gray color. The dashed line marks the boundary of the area with melt concentration higher than 2%. The black 

rhomb and square denote foci of magmatism based on petrological evidence (see below). 

The resulting thermal model along the interpretation profile is depicted in figure 2. Geological 

information suitable for numerical verification of the pattern of the deep-seated processes that was 

used is but scarce. Of particular interest in this context is verification with the help of velocity and 

density models. The extent of detail in the velocity model [3, 4, 5 and 15] is sufficient for spotting 

differences in the structure of the crust and upper (to 200 km) mantle in parts of the region. The 

pattern of the deep-seated process (and the thermal model) only represent a two-dimensional 

construction. The geological information used is adjusted to ―fit‖ such a model structure. 

It was assumed that recent volcanism is represented by two zones that stretch across the entire 

region (see above). 

 

2. Heat and velocity models  

For comparison with such an averaged construction, we selected data for three profiles (representing a 

three-dimensional tomographic model) on which there should be no visible effect from areas 

encircling the Kamchatka geosyncline from north to south: profiles 7, 8, and 10 which are shown in 

figure 1. Comparison was performed both with the mantle velocity model averaged for three profiles 

and with those constructed along each of those profiles (see below). 

It is obvious that the thermal model incorporates the mantle asthenosphere (where temperatures 

exceed T solidus) at depths of about 70-120 km and a thin layer of partial melting in the crust at depths 

of about 20-30 km. In the latter case, partial melting was believed to start at temperatures higher than 

600
o
C [10]. It is likely that both partial-melting layers are absent at pickets 130-170. It also seems 
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likely that a small partial-melting layer exists at the bottom of the hottest portion in the thickest crust 

at temperatures higher than 1,050
o
C. 

The crustal part of the thermal model that was not taken into account in the construction of the 

velocity model has been calculated in very general outlines, without much detail that might reflect 

rather complicated processes within the crust, processes typical of post-geosynclinal activation. 

Information on temperatures and pressures (depths) at which crustal rocks presently lying at the 

surface formed [1, 14 and 12] makes it possible to verify the crustal part of the thermal model (figure 

3).  

 

 

 

 

Fig. 3. Comparison between estimated (1) and 

experimentally derived (2) temperatures in the Earth’s 

crust of Kamchatka. 

On the whole, a fairly good match has been achieved. Experimentally derived temperatures that 

turned out to be higher than estimated in some areas are confined to a range of depths above a 

partially-melting layer within the crust. High temperatures there indicate that crustal rocks around 

magma intrusions into the upper crust absorbed the heat. This twist of the process was not taken into 

account in the model. Its analysis provides explanation for such temperature anomalies (see above). 

 
Figure 4. Distribution of heat flow (in mW/m

2
) in the area under study (Smirnov et al., 1991). 

According to petrological data (Frolova et al., 1989), depths of pockets of young magmatism in 

Kamchatka’s mantle may be located at depths ranging from 70±10 km to 140±20 km. This result 

agrees fairly well with the contemporary thermal model (figure 2). Using larger amounts of data, 

Gordienko [9] analyzed depths of magma chambers and temperatures in them and provided a relevant 

bibliography. Depths and temperatures were determined for the foci of initial magmatism: 215 km and 

1,750
o
C and 155 km and 1,550

o
C. In the median stage of the cycle: 90 km and 1,300

o
C; and for the 

final stage and contemporary activation: 55 km and 1,200
o
C. These data are in agreement with thermal 

models representing respective ages. 

Consequently, petrological control of the thermal model appears to be a success. It may be 

continued further with the use of information on the composition of igneous rocks of mantle origin but 

of different age collected from other areas of Kamchatka. 
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Distribution of heat flow values in the region might seem like a logical verification of the thermal 

model. In fact, however, it is hardly workable at all in the case of Kamchatka because of the region’s 

insufficient coverage by geothermal studies (figure 1).  

On the basis of the thermal model (in terms of differences between temperatures at different depths 

and background temperatures beneath the Precambrian platform) and the data on the distribution of 

velocities in the mantle of the Precambrian platform (in line with the hypothesis and lherzolite 

composition of mantle rocks), Vp values in the region were calculated and correlated with those 

derived experimentally. The data on Vp variation with temperature at various depths have been 

analyzed fairly well. They are listed, for example, in a study by Sobolev et al. [17]. In calculations, the 

Vp=f(T) was simplified to linear which does not cause errors larger than 0.01 km/sec. It was assumed 

that 100
o
C temperature differences from the background temperature (beneath the platform) cause Vp 

to change by 0.06 km/sec. With the emergence of melt (solidus temperature of mantle rocks is 

exceeded: Ts=1.013+3.914H – 0.003H
2
, where H designates depth in km), Vp values further decrease 

by 0.07 km/sec per each percent of its concentration. The amount of melt was assumed to be 

increasing from 1% at the point of solidus by 1% with the temperature increase by 50
o
C [10 and 

others]. An estimated velocity model along the interpretation profile is shown in figure 5 where it is 

compared to experimental results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Experimental (A) and estimated (B) 

velocity models along the profile. The 

asthenosphere is marked by gray color. 

Elements matching the experimental model and those differing from it can be clearly seen. In a 

generalized form, they can be represented through comparison between Vp values pertaining to each 

depth (figure 6). Estimated velocities (with the exception of those at the topmost part of the profile) 

turn out to be slightly lower than experimental. 

 

 

 

 

 

 

 

 

Figure 6. Comparison between mean estimated 

and experimentally derived velocities along the 

profile. A is the asthenosphere according to 

seismological and geothermal data.  

A more detailed analysis of the balance between estimated and experimental velocity models was 

performed in the following way [3]. Areas of the models were divided into elementary cells 20x20 km 

in size; for each of them the mean value of Vp was calculated. A histogram showing distribution of 
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differences between them is shown in figure 7. The distribution of differences deviates somewhat 

from normal, but the assessment of the modal value (0.075 km/sec) is quite reliable. Apparently, this 

can be accounted for by errors in both values being correlated (the calculation error is clearly 0.05 

km/sec or larger). Therefore, the agreement can be viewed as acceptable.  

The mean deviation, according to results of comparison with individual sections on three profiles is 

0.12 km/sec. In view of the conditions making the comparison difficult to perform, such a divergence 

may be accepted as satisfactory. To put it differently, considering the adopted composition and 

mineralogy of mantle rocks, as well as temperature distribution, the experimentally derived velocity 

values can be accounted for. 

 

 

 

 

 

 

 

 

Figure 7. Histogram showing differences 

between estimated and experimentally derived Vp 

along the profile. 

A velocity model for Kamchatka’s entire upper mantle was constructed on the basis of a thermal 

model by authors – see figure 8. 

 

 

 

 

 

 

 

Figure 8. Comparison between the upper mantle 

velocity model for island arcs and those 

constructed in terms of the advection-

polymorphism hypothesis (APH). 

1. Velocity distribution in the upper mantle of the 

Precambrian platform; 2. Velocity distribution 

constructed by authors; 3. Predicted velocity 

model for the Alpine geosyncline upper mantle 

based on the APH theory. 

The divergence between the velocity models averages about 0.1 km/sec, which is readily accounted 

for by errors in the determination of experimental data. Differences between the above models and the 

platform model point to an advective nature of the heat and mass transfer. 

The thermal model reflecting deep-seated processes in the region must also, to a certain extent, 

reflect seismicity, which is an important parameter at the contemporary stage of events. To analyze it, 

it is necessary to consider numerous parameters of the medium and earthquake characteristics. It will 

therefore be reported in a special paper largely based on a study by Gordienko [8]. 

 

3. Density model of the tectonosphere  

The aforementioned three-dimensional velocity model incorporates the Earth’s crust. It turned out to 

be sufficiently detailed and reliable for constructing (in combination with other data – [12] and others) 

diagrammatic models of density distribution along the three profiles running across Eastern 

Kamchatka (figure 1). The crustal model represented the distribution of depths for the M. 

discontinuity, 6.5 and 7 km/sec velocity levels, and the basement. The velocity of a layer between the 

7 and 6.5 km/sec isolines was assumed to be 6.7 km/sec. The Vp value of 6.0±0.5 km/sec was adopted 
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for the basement surface, and 6.5 km/sec was considered as an average between the basement and the 

6.5 km/sec isoline. Thus, the velocity profile used is overschematized, yet, given the available factual 

data, it is impossible to construct a more detailed profile: The details would be inaccurate. 

The abundance of basic and ultrabasic rocks in the Earth’s crust of Kamchatka has prompted us to 

use, alongside conventional formulas, also conversion formulas from Vp to σ applicable to the layer of 

crust-mantle mixture (CM): σ = 2.69 +0.26 (Vp-6) and σ = 3.02 + 0.28 (Vp-7), where σ is density in 

g/cm
3
. It certainly largely applies to the lower layer of a consolidated crust: without the effect of high 

temperature, velocity values there would have been like in the CM layer. Small corrections (0.005-

0.01 g/cm
3
) made up for the anomalous heating of the crust. The thickness and density (2.55 g/cm

3
) of 

the sedimentary-igneous veneer on dry land was adopted according to a study published by Gordienko 

et al. [12] and others. These data do not contradict the rather scanty information on seismic wave 

velocities in Kamchatka’s veneer (2.4 - 4.6 km/sec). The thickness of sediments beneath the seabed 

was believed to be decreasing in the direction from the shore to the trench from 4-5 to 1-0.5 km in 

accordance with typical distributions of the parameter in other areas of southern Kamchatka, as well as 

the Kuriles and Hokkaido. It was assumed that the density there is somewhat lower than on dry land: 

2.45 g/cm
3
. There is no material to specify the parameter, and the influence of its variation on crustal 

effect is hardly significant at all. 

Provided that density distribution in the upper mantle is normal, the estimated gravitational effect 

of the crust resembles in shape the distribution in the observed field, but as far as its level is 

concerned, it has nothing in common with the latter: It is higher by approximately 200 mGal (170-190 

mGal) on dry land and by over 200 mGal at sea. The magnitude of the mantle anomaly generally 

resembles that common for the Alpine geosyncline undergoing contemporary activation, as well as for 

young oceanic basins. It testifies to a very intensive heating of the upper mantle’s top portion, 

something that (in terms of the APH) is inevitably associated with the cooling of the mantle’s lower 

portion and polymorphic transformations of mantle rocks. 

A thermal model for the upper portion of the mantle (to approximately 200 km) was already 

presented earlier in this paper. A certain adjustment was introduced for the mantle beneath the basin. 

The major problem in the construction of a model for the basin encompassing the entire thickness of 

the upper mantle boils down to the lack of reliable geological information on the events that have 

taken place over recent dozens of millions of years. The problem is further aggravated by the fact that 

the process beneath the Obruchev Hills may differ from the processes in the basin proper. Even if 

temperatures in the top portion of the upper mantle are similar for different versions of the process, 

they may differ considerably in the mantle’s lower portion and cause changes in density (which may 

turn out to be quite appreciable once conditions become ripe for polymorphic transformation of rocks), 

so that the resulting densities would differ from those used in the calculations. These considerations 

have prompted us to restrict the area of calculations and not to go beyond the trough axis. Further 

southeast the reliability of the results may sharply decrease.  

The distribution of temperatures was used to determine anomalous densities. The following factors 

σ relative to normal distribution (Tn) under the effect of an anomalous temperature, i.e. its deviations 

from the background temperature. At the point of solidus (Ts) the amount of fluid was assumed to 

equal 1%, so that for its increase by 1% (to the level of segregation – presumably amounting to 3-5%), 

a heating by 50
o
C was assumed to be required. One percent of basaltic fluid (at depths indicated in the 

model) reduced the density by 0.0033 g/cm
3
. This correlation cannot be applied to larger depths: For 

melt composition corresponding to the composition of the rock, the melt is more compact than the 

solid mantle at depths larger than 200-250 km. 

2. High temperatures caused mantle rocks at depths of about M.-30 and 30-100 km to transform to 

plagioclase and spinel facies, respectively. This resulted in the reduction of their densities by 0.125 

and 0.08 g/cm
3
 [10 and others]. A concept regarding preservation of relics of the reworked continental 

crust beneath a thin oceanic crust (down to 33 km) in the northwestern basin [2] suggests the same 

densities. 

The anomalous density values for upper mantle rocks of the region are presented in figure 9.  
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Figure 9. Anomalous densities in the upper 

mantle beneath the profiles.  

1 – isolines of anomalous densities (in 0.01 

g/cm3) associated with anomalous temperatures 

and partial melting; 2 – plagioclase lherzolite 

zone; 3 – spinel lherzolite zone; 4 – zone (above 

470 km) of anomalous compaction in connection 

with polymorphic transformation at the bottom of 

the upper mantle. 

Attempts to precisely determine the error in calculations of the effect of the mantle’s anomalous 

densities have so far failed. Real errors in the calculation of temperatures [10 and others] enable us to 

assess errors in drawing boundaries of polymorphic transformation zones at just a few kilometers. 

Associated with them in each case may be errors in the calculation of the field equaling 10-15 mGal. 

3. During the process of cooling of the upper mantle’s lower portion as a result of the overlying 

deep-seated material sinking there, conditions arise that promote a temperature at which olivine 

transforms into a mineral with the structure of spinel, and thus the rock undergoes compaction by 

approximately 0.21 g/cm
3
 [10 and others]. At a normal temperature distribution, the transformation 

occurs at the depth of about 470 km. 

With an account for all the errors in the determination of estimated and observed fields listed above 

as (Σ(Δg)
2
)

0.5
, we get an assessment of the divergence that they caused between the Δg values being 

compared amounting to about 40 mGal. The estimated gravitational effect of anomalous densities in 

the upper mantle beneath the profiles makes it possible to approximately equalize the estimated and 

observed fields (figure 10). Significant divergences have largely been detected in marine portions of 

the profiles where errors in the determination of both values being compared may increase. It cannot 

be ruled out that after the used a priori information is refined, the estimated and observed fields may 

turn out to be closer in magnitude. On the whole, correlation between the fields may be viewed as 

satisfactory, with an allowance for the lack of accuracy and, occasionally, the hypothetical character of 

the data used and colossal swings in the values of gravitational fields along the profiles.  

Maximum divergences between the estimated and observed fields at some sites reach 89-100 mGal, 

which is a lot, yet they do not contradict the assessment made above. Maximum divergences are 

confined to the trough and to the area east of it. The overall results of the comparison between the 

fields are shown in figure 11. It follows from them that the average difference between the fields 

along all the three profiles does not exceed the forecast value and amounts to 30-40 mGal. A 

histogram of the distribution of the divergences is more or less symmetrical and points to its relative 

similarity to normal distribution. 
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Figure 10. Comparison between estimated and observed gravitational fields along profiles I, II, and 

III. 

1-3 are gravitational fields: 1 – observed, 2 and 3 estimated (2 – is the effect of the crust and normal 

mantle, 3 – taking into account the mantle’s anomalous density). 

 

 

 

 

 

Figure 11. Histogram illustrating divergences 

between calculated and observed fields along 

profiles I, II, and III. 

We can generally claim that in the case of Kamchatka, a fairly good match between prognostic and 

experimentally derived parameters can be achieved without the need to adjust them, and the level of 

deviations is in line with errors in both sets of parameters. 

 

Acknowledgment:  The authors wish to express special thanks to Mrs. Rita Schneider for translating 

this paper from Russian. 
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