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Abstract. The first results of simulation of the seasonal variability of the Arctic and North 

Atlantic ocean waters and ice by a coupled model based on a full three-dimensional ocean 

dynamics model INMIO4.1 and a sea-ice model CICE5.1 are considered. The coupled model 

can be run on massively parallel computers under control of the Compact Modelling 

Framework CMF2.0. The numerical experiment is performed according to the CORE-II 

protocol with 1948 atmospheric forcing data. Possible causes of the deviation of the model 

solution from the ERA-20C reanalysis and WOA09 climatology are discussed.  

1.  Introduction 

The Arctic region is an important territory both scientifically and economically. The Arctic Ocean 

(AO) is sometimes called the Arctic Mediterranean Sea or the Atlantic Ocean estuary. Due to its 

relatively small volume and long interface with the Atlantic Ocean, the processes taking place in the 

North Atlantic have a substantial influence on the Arctic Ocean. On the other hand, it is affected by 

relatively fresh Pacific Ocean waters coming through the Bering Strait. 

The Arctic Ocean is bounded by Russia, Denmark, Iceland, Norway, Canada, and the USA. For the 

most part of the year it is used for sea cargo transportation and mineral and biological resources 

extraction. For the maintenance of economic activity it is important to have accurate and reliable 

operational information on the sea environment, including the ice conditions, which can be obtained 

by mathematical modelling. Seasonal numerical forecasting of the Arctic system is also very important 

because of the observed trends of regional warming, decrease in the sea ice area and volume and 

increase in the frequency of extremal weather condition events. 

This paper is aimed at gaining the first experience on a coupled ocean-ice numerical simulation of 

the Arctic Ocean and model investigations of the mechanisms of intra-annual variability of the sea 

environment. Our numerical experiment is a calculation of the quasi-stable Arctic climatic system 

produced by cyclic annual variations of the atmospheric parameters and solar radiation taken from the 

CORE-II database [1] for the year 1948. The results obtained by the model are validated against the 

ERA-20C reanalysis [2] and WOA09 climatology [3,4] data. 
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In Section 2, ocean and ice models and a coupling technology are described. Section 3 shows the 

setup of the numerical experiment. Section 4 presents the results of the calculations. Section 5 contains 

conclusions and plans to develop the model. 

2.  Coupled model 

The numerical experiment is performed with a coupled ocean-ice model at a nominal spatial resolution 

of 0.25°. The ocean component is a model called INMIO4.1 developed at the Institute of Numerical 

Mathematics of the Russian Academy of Sciences (INM RAS) and the Shirshov Institute of 

Oceanology (IO RAS). The sea ice is described by a model called CICE5.1 of the Los Alamos 

National Laboratory, USA. The coupled model is implemented for massively parallel computers under 

control of the Compact Modelling Framework CMF2.0 developed at INM RAS.  

2.1 INMIO ocean model 

The INMIO numerical model has been developed to investigate the general ocean circulation in a wide 

range of spatial and temporal scales. The full 3D PEM system of equations in the Boussinesq and 

hydrostatic approximations is implemented by a box-method for an arbitrary B-type horizontal grid 

and vertical z-axis. The water-air interface is described by free-surface conditions and explicit 

definition of heat, momentum, and water fluxes by the CORE atmospheric boundary layer bulk 

formulas [5]. At the solid lateral boundaries free slip and zero heat and salt flux conditions are 

imposed. To provide numerical stability, biharmonic filters are included in the momentum, heat, and 

salt transfer equations. The model has a built-in ice thermodynamics solver [6], which is also used in 

the calculations. 

The momentum transfer term is approximated with a centered difference scheme. For the transport 

of heat, salt, and other tracers a flux-corrected transport scheme [7] is used. The water and tracer 

transport schemes are numerically consistent. In the time derivative approximation we use a leap-frog 

scheme, periodically applying an Euler step scheme for mutual relaxation of the computational modes. 

To use the computer resources effectively, the fast barotropic ocean processes are modelled separately 

from the baroclinic processes by solving a system of shallow water equations using a predictor-

corrector scheme [8] with small time steps. The vertical turbulent mixing is parameterized by the 

Munk-Anderson scheme with convective adjustment of the unstable water columns. The background 

vertical viscosity and diffusion coefficients are 10
-4

 and 10
-6

 m
2
/s, and the maximal values in regions 

with low Richardson numbers are 10
-2

 and 10
-3

 m
2
/s, respectively. Except for the vertical mixing, all 

the processes are described by explicit numerical methods, which made it possible to effectively 

parallelize the program code [9]. A more detailed description of the model is presented in [10].  

2.2 CICE ice model 

The CICE sea ice model has been widely used by scientific groups all over the world. For instance, it 

was used in the AOMIP project [11]. The model defines the states of ice and snow in terms of their 

distribution functions g(x,t,h) in time, geographical space, and thickness space. The description of ice 

includes several (by default, 5) thickness categories. The main prognostic variables for each category 

are the ice compactness (concentration), grid cell-mean ice and snow thickness, ice and snow internal 

energy, ice salinity, and surface temperature [12]. 

In this paper, the CICE model was run in a thermodynamic regime which includes modelling of the 

local processes of production, melting, and mutual conversion of ice and snow cover according to 

precipitation, diffusive heat conductivity, propagation of several radiation bands, heat exchange with 

the atmosphere and liquid water, evaporation and the corresponding latent heat flux, water and salt 

exchange with the ocean, and other processes with the exception of moving in space and internal 

stresses. The thermodynamics is modelled in a mushy approximation which describes the sea ice as a 

fresh ice medium containing brine pockets defining the distribution of salinity and enthalpy [13]. For 

the thermal conductivity, a bubble parameterization [14] is used. In addition to snow cover, the model 
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simulates the development of melt ponds as tracers including their drainage to the ocean. The solar 

radiation absorption is parameterized by the Delta-Eddington scheme. 

 

 

 

2.3 Coupled model 

The coupled INMIO-CICE ocean and ice model is implemented for massively parallel computer 

systems by means of the Compact Modelling Framework (CMF), which provides fully parallel 

interprocessor communications, multilevel data interpolation, and asynchronous I/O operations [15]. 

The CMF allows running an abstract coupled model consisting of an arbitrary number of components. 

Each of them, in turn, links in program libraries of a particular model (ocean, ice, atmosphere, land, 

etc.) and defines its own time cycle for solving the physical equations and periodical exchange of the 

two-dimensional data fields describing the interfaces with the other model components. In the 

exchange, these fields are remapped by the CMF from the source to the receiving grids. 

In the coupled model, the data sent from the ice to the ocean includes ice concentration, ice-water 

stress components, fluxes of heat, salt, fresh water, and penetrating solar radiation. These quantities 

are summed over all ice categories. The ocean component sends to the ice component the fields of sea 

surface temperature, salinity, and velocity components, the surface tilt, and the freezing-melting 

potential. The latter is calculated before the data transmission and is equal to the coupling interval time 

mean heat flux necessary for the surface grid cell temperature to be brought to the freezing point. In 

the case where the potential is positive (i.e. the temperature is below the freezing point) the model 

instantly changes the water temperature to the freezing point, and then the ice model gradually 

calculates the corresponding changes in the ice volume and concentration, salt, and fresh water fluxes. 

The atmosphere component is implemented by means of a CMF function which reads the forcing 

data from the NetCDF files and sends them to the ocean and ice components with remapping to the 

corresponding grids. The ocean and ice components receive the air temperature, specific humidity, and 

wind velocity components at a height of 10 m, downwelling short- and long-wave radiation, rain and 

snow intensity. 

3.  Numerical experiment setting 

The purpose of the numerical experiment was to simulate the seasonal variability of the water 

circulation and ice of the Arctic Ocean under some defined annual variations of the atmospheric 

circulation. The experiment setting corresponds to the CORE-II protocol, which provides the daily 

mean downwelling radiation fluxes, monthly mean precipitation, continental runoff, and the diurnal 

cycle of atmospheric parameters (temperature, humidity, and wind) taken from the NCEP/NCAR 

reanalysis for the year 1948. The data also contains some modifications [16] for the ocean model to 

run correctly without the interactive atmospheric component. The monthly mean continental runoff is 

defined as the precipitation spread over the ocean surface close to the coasts and river estuaries. We 

have performed 5 model years of calculation with cyclic specified forcing data.  

To avoid the model sea level drift, a surface water flux normalization condition is applied, i.e. the 

global mean value is subtracted from the total water flux (Prec – Evap + Runoff). The initial 

temperature and salinity conditions are taken from the annual mean WOA09 data, and the initial ocean 

current velocities are zero. The initial sea ice distribution fills the ocean north of 70° N with uniform 

2m-thick ice. The ocean bottom topography is interpolated from the ETOPO5 database [17] without 

the internal continental water reservoirs and the Black Sea. The model time step is 10 min for the 

baroclinic and ice processes, and 20 s for the barotropic processes. 

The horizontal model grid is three-polar [18] with poles in Siberia, North-Western Canada, and at 

the true geographic South Pole. The grid resolution in the spherical part (south of 60° N) is 0.25°. The 

grid cell dimensions vary from 28 km × 28 km at the equator to 6 km × 28 km on the Antarctic coast, 

8 km × 17 km at the North Pole, and 11 km × 8 km along the continental coast of the Arctic Ocean. 

The vertical discretization includes 49 levels with steps from 6 m in the upper layer to 250 m in the 
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ocean depth. The ice model works in the area north of 42° and uses the same horizontal grid. Since the 

Antarctic is not the subject of the current study, it is handled with a simple built-in ice model [6] to 

reduce the computational expenses. 

The space-variable horizontal heat and salt diffusion coefficient is taken proportional to the square 

root of the horizontal grid steps product, and the biharmonic diffusion coefficient is proportional to the 

3
rd

 power of this value. The simple and biharmonic background viscosity coefficients are scaled due to 

the grid steps in the same way. The corresponding diffusion values on the equator are 10
3
 m

2
/s and  

-9·10
9
 m

4
/s. The horizontal viscosity coefficient is parameterized by the Smagorinsky method [19] 

with the coefficient С
2
=4, and the background equatorial value is 10

3
 m

2
/s. For the biharmonic 

viscosity the coefficient is the same, and the background equatorial value is -27·10
9
 m

4
/s. The shallow 

water equations use viscosity with a uniform coefficient of 100 m
2
/s. 

4.  Results of the numerical experiment 

Let us consider the last 5
th
 year of the experiment and compare the model ice concentration field with 

the ERA-20C data for the months of the ice cover maximum and minimum, March and September. 

For the March ice concentration there is a good agreement of the model results with the reanalysis data 

(figures 1a and 1b). The only exception is the North Pacific region where the model shows slightly 

more ice. This confirms a hypothesis of [20] that to simulate the winter ice extent in the Northern 

Hemisphere it is generally sufficient to use a thermodynamic ice model.  

The Arctic and North Atlantic ice extent in September is overestimated by the model, possibly 

because of the insufficient northward heat transport due to the low resolution, high model ocean 

viscosity, and the absence of southward ice transport, because the dynamic ice submodel was turned 

off, for instance, by the Labrador Current. On the other hand, the Pacific sector of the Arctic Ocean 

lacks ice, which may be explained by the incorrect simulation of the Bering Strait water transport or 

by peculiar features of the ocean weather in this year which cannot be simulated without taking into 

account the interannual variability. Since the 1990s there are many measurement data estimating this 

transport on a level of approximately 0.8 Sv northward, for instance, [21]. For the mid-20
th
 century 

there are less data and their spread is larger, from 1 to 2-3 Sv [22]. Therefore, the estimate of 1.2 Sv by 

our model seems realistic. However, this question should be investigated in more detail to assess both 

the interdecadal variability and the accuracy of measurements and reanalysis data. Note that a close 

value of the Bering Strait transport (1.3 Sv) was obtained in [23] by the eddy-resolving INMIO model 

configuration with the ERA40 forcing. 

Figure 1c shows the deviations of the modelled monthly mean temperatures from the 

corresponding fields of the ERA-20C reanalysis data for the chosen year. Inside the Arctic Ocean the 

deviations are rather small, since the surface temperatures are fixed by the freezing point equation. As 

for the neighboring basins, the large anomalies are close to the ice boundaries in the Labrador and 

Greenland Seas. Such seasonal conditions are very hard to simulate without an interactive atmospheric 

model. The mechanisms of model solution biases in this case are discussed in [16]. 

The March temperature distribution is greatly affected by the vertical mixing processes, since in 

this month it is usually most intensive. Consider the March upper mixed layer depth (MLD) based on 

the model solution and on the WOA09 data (figure 2). According to [24], let us define the MLD 

boundary as the depth at which the potential density (calculated from the monthly mean temperature 

and salinity) deviates from its surface value by 0.125 σ-units. The plotted depth range is limited to 

1000 m. The model reproduces the MLD field reasonably well, except for the region of east-Atlantic 

mid-latitudes, possibly due to the weather peculiarities of the current year. 
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Figure 1. Monthly mean fields for March (left) and September (right): a – model ice concentration, b 

– ERA-20C ice concentration, c – model SST (ºC) deviation from ERA-20C. 
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The horizontal boundaries of the surface warm bias in the Labrador Sea are close to the boundaries 

of an area with deep mixing in the model solution and no such mixing in the WOA09 data. For 

example, in the north of the Labrador Sea (62ºN, 54ºW) the model convective adjustment penetrates 

up to the 25
th
 model vertical level (550 m), while below this level the model and climatology data are 

close. The model MLD at this point is 2875 m, which coincides with the full model ocean depth. The 

climatological MLD is only 100 m, and the difference between the surface and bottom potential 

densities is 0.5 σ-units. Thus, it can be assumed that the March warm surface bias in the north of the 

Labrador Sea is caused by incorrect reproduction of the water stratification by the model. To correct 

such errors, a better vertical mixing parameterization should be used. A similar conclusion can be 

made from an analysis of the vertical T,S profiles off the south-west Svalbard coast, where the cold 

season convection leads to the development of a cold model bias persisting in summer. 

On the other hand, a similar analysis of the vertical T,S distributions to the east and north-east of 

Iceland shows that vertical mixing is not directly associated with the development of a “dipole” 

surface temperature bias existing throughout the year. This effect is most pronounced in winter and is 

probably caused by the incorrect simulation of the complex structure of ocean currents near the ice 

edge and polar front [25]. 

 

  

Figure 2. Ocean surface mixed layer depth in March (meters, 

a – based on model solution, b – based on WOA09 data). 

 

Figure 3. Vertical profile of the 

AMOC stream function at 26.5ºN 

based on model solution and RAPID 

data. 

Figure 3 presents a comparison of vertical profiles of the Atlantic meridional overturning 

circulation (AMOC) stream function at 26.5ºN based on the model solution and RAPID 2004-2008 

observation program data taken from [26]. The stream function is defined as the integral Atlantic 

northward water transport at the chosen latitude between the surface and the chosen depth. The model 

function differs from zero at the bottom, which corresponds to the contribution to AMOC from the 

Bering Strait transport, the continental runoff, and the surface water fluxes. The RAPID data include a 

spatially uniform corrective addition to the velocity field, such that its stream function is zero at the 

bottom. 

Despite the different time periods and uncertainties in the RAPID data (velocity correction, use of 

the reference level method in open deep ocean), we see that the coupled model underestimates the 

meridional water transport (the stream function maximum is 15.4 Sv in the model solution and 18.6 Sv 

in the RAPID data). 

The North Atlantic deep water (NADW) penetration depth, determined according to the zero 

isoline of the AMOC stream function, reaches about 3000 m, which is the value produced by most 

CORE-II models of [26] but less than that produced by the observational data. Therefore, the 

underlying Antarctic bottom water (ABW) occupies a larger depth range. The maximal ABW 

southward transport in the model solution (4 Sv at 5000 m) is correctly located on the vertical axis but 
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overestimated about 2 times; it lies at the upper boundary of the model results range in [26]. Since the 

main source of NADW are dense and cold Nordic Seas’ waters overflowing the Greenland-Scotland 

Ridge [27], to improve its simulation it may be necessary to use a parameterization of the overflowing 

process. 

Finally, we consider the mechanism of development of the September warm bias in the Chukchi 

Sea. Figure 4 shows the annual variations of the surface ocean parameters at (69ºN, 170ºW). 

According to the CICE conventions, fluxes are defined per unit area of ice, and ice and snow 

thicknesses are grid cell-averaged. 

 

 

Figure 4. Annual variations of surface ocean parameters at (69ºN, 170ºW): а – ice concentration, b – 

ice thickness (m), c – snow thickness (m), d – ice-penetrating shortwave radiation (W/m
2
), e – sea 

surface temperature (°C), f – sea surface salinity (psu), g – air temperature (°C). In the narrowest 

section of the Bering Strait: h – section-averaged northward surface velocity (m/s). 

 

It can be seen that the dramatic change in the surface ocean characteristics in the chosen location is 

on the 170
th
 day of the year, when the sea surface temperature exceeds the freezing point and the ice 

concentration and thickness start to decrease quickly. Before that time the ocean is covered with ice 

and snow, and the ocean surface heat and radiation fluxes are close to zero. Thus, we may conclude 

that the gradual pre-170
th
 day heating of the ocean surface layer may be caused by warm Pacific water 
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whose transport in the Bering Strait is relatively stable in this period. A contribution can also be made 

by the snow cover melting, which starts on the 140
th
 day, when the air temperature rises above zero 

and leads to an increase in the solar radiation absorbed by the ice and ocean water. This process is 

accompanied by gradual ocean freshening, which speeds up when the ice starts melting and stops on 

the 190
th
 day, when the Bering Strait current slows down and becomes unstable. Thus, the Chukchi 

Sea ice discharge in September can be qualitatively explained by two successive processes: 1) gradual 

Pacific water heating and penetrating solar radiation due to melted snow cover; 2) start of fast ice 

melting and open water heating by solar radiation. In [28] it is pointed out that precipitation plays an 

important role in the ocean freshening in this period, which deserves further investigation. 

5.  Conclusions 

The work has yielded the first results of a calculation of the Arctic Ocean characteristics using a 

coupled simulation by the INMIO-CICE model with a spatial resolution of 0.25°. The 5-year 

numerical experiment is the first important step in the development of a modern coupled ocean-ice 

model. Its results show that on the space and time scales considered the coupled model can reproduce 

the Arctic Ocean thermohydrodynamic variability qualitatively well. The causes of the main model 

solution biases from the “real” ERA-20C reanalysis data and WOA09 climatology have been 

identified. The ice-ocean model can be used as a powerful tool for the investigation of large-scale 

circulation and regional forecasts. Further work will include tuning of the model in an eddy-permitting 

regime with ice dynamics, improvement of the parameterizations, and use of a higher resolution.  
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