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Abstract. Dish-Stirling concentrated solar power system (DS-CSP) is an important pathway 

for converting solar energy into electricity at high efficiency. In this study, a rated power 38 

kW DS-CSP system was developed (installed in Xiangtan Electric Manufacturing Group). The 

heat engine adopted the alpha-type four cylinders double-acting Stirling engine (Stirling 

Biopower Flexgen S260). The absorber flux distribution simulation was conducted using ray 

tracing method and then the 204 m
2
 parabolic dish concentrator system (diameter is 17.70 m 

and focal length is 9.49 m) with single concentrator plus single pillar supporting has been 

designed and built. A water-cooled disc target and an absorber imitation device were adopted 

to test the tracking performance of the dish concentrator system, homogeneity of the focal spot 

and flux distribution of the absorber. Finally, the S260 Stirling engine was installed on the 

focal position of the dish concentrator and then the net output power date of the 38 kW DS-

CSP system was tested. The absorber overheating problem on the DS-CSP system performance 

was discussed when the DS-CSP system was installed in different locations. The testing result 

shows that this system achieved the net output power of 38 kW and solar-to-electricity 

efficiency (SEE) of 25.3% with the direct normal irradiation (DNI) at 750 W/m
2
. The net 

output power can further increase to 40.5 kW with the SEE of 26.6% when the DNI reaches up 

to the maximum of 761 W/m
2
. The net output power of the 38 kW DS-CSP system has a linear 

function relationship with the DNI. The fitting function is Net power output=0.1003×DNI－
36.129, where DNI is at the range of 460~761 W/m

2
. This function could be used to predict the 

amount of the 38 kW DS-CSP system annual generation power.  

1.  Introduction  

Solar thermal power generation utilizes the sun as a heat source which can drive a heat engine for 

power production by concentrating technologies [1]. At present, Concentrated Solar Power 

technologies majorly include the solar tower system, Dish-Stirling concentrated solar power system 

(DS-CSP), parabolic trough system and Fresnel system [2]. The DS-CSP system is characterized by 

high solar-electricity efficiency, scalable power generation and high modularity, which has been 

regarded as a promising CSP technology for highly efficient solar power generation [3,4].  

DS-CSP system consists of a parabolic concentrator and a Stirling engine system [5,6]. The 

parabolic concentrator provides highly concentrated solar irradiation as the heat source for the Stirling 

engine to produce electricity with a high efficiency which in turn achieves a high solar-to-electricity 
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efficiency [2,3,7-14]. The DS-CSP unit with world maximum output power was built by Schlaich-

Bergermann und Partner Company (SBP). The diameter of the single dish parabolic concentrator is 

17.0 m with a metal tensioned membrane structure. The maximum output power can reach 53 kW 

(direct normal irradiation (DNI) is 1000 W/m
2
) with the 4-275 kinematic Stirling engine (rated power 

50 kW) and the solar-to-electricity efficiency (SEE) is 23.0% [8,9]. Five types of DS-CSP system was 

reviewed by Mancini et al [3] at 2003 with system rated power between 9.5~25 kW and SEE value 

between 19.0%~29.4%. Among them, the Stirling Engine Systems (SES) company 25 kW DS-CSP 

system got the highest efficiency (29.4%). The SES company established a 150 kW power station in 

2005 (rated power is 25 kW), and the SEE of the Serial # 3 can reach to 31.25% on 31 January 2008 

and create a new world record [9]. In September 2009, SES company built the first demonstrated plant 

in Arizona, United States, which was composed of 60-SunCatcher™ dish units with each unit of 25 

kW (1.5 MW in total). The plant started production in January 2010 with annual solar-to-electricity 

gross efficiency equaled to 26% [10]. In year of 2012, a 100 kW DS-CSP demonstration station was 

built in the Ordos city in Nei Mongolia of China with the unit power of 10 kW. Baharoon et al [2] 

reviewed the development of the CSP technology and presented the DS-CSP power station projects 

under building or planning (Infinia Corp [12], Capacity 1.5 MW, and start production year 2013). 

From the recently review[1-3,13,14], most existing DS-CSP systems are with a rated power below 25 

kW, but only the SBP company has a system with rated power of 50 kW. Very few literatures have 

been found for the DS-CSP system rated power between 25 kW to 50 kW which is a power range 

worth of exploring. In this study, we will develop the rated power 38 kW large DS-CSP system, and 

future application in the large-scale solar power station or remote areas for distributed power supply.  

The development of the DS-CSP system generally includes the design of the Stirling engine, cavity 

absorber, and the parabolic dish concentrator [13]. The Stirling engine development process includes 

the mechanical structure design [15,16] (e.g, the design of the piston motion mechanism, regenerator 

and cooler), thermodynamic calculation [17], fluid dynamics analysis [18], and the design of the 

generator and control system. This is a complex project. In this paper, a mature Stirling engine 

(Stirling Biopower Flexgen S260) was applied to the 38 kW DS-CSP system development. The S260 

Stirling engine is α-type four cylinders double-acting Stirling engine and working fluid is hydrogen. 

The S260 Stirling engine was originally applied to biomass thermal power generation, and its heat 

absorber is enclosed cylindrical cavity structure. We need to redesign the absorber structure in order to 

apply the S260 Stirling engine to the solar thermal power generation. 

In this study, a rated power 38 kW DS-CSP system was developed and tested. The heat engine 

adopted the alpha-type four cylinders double-acting Stirling engine (Stirling Biopower Flexgen S260). 

The 17.70 m parabolic dish concentrator has been designed and implementation. The paper structure 

and main contents are as follows. In section 2, the flux distribution of absorber simulation was 

conducted by using ray tracing model for analyzing. In section 3, the single dish plus single pillar 

supporting parabolic dish concentrator system was designed. In section 4, the installation of the 

concentrator mirror and optical performance test of the concentrator were described. In section 5, the 

operation data of the 38 kW DS-CSP system were analysed. Lastly, a summary and conclusions were 

drawn.  

2.  Absorber flux distribution 

The parabolic dish concentrator parameters (radius and focal length) determination needs to consider 

the performance matching of the concentrator and the Stirling engine. This includes two aspects, one 

is that the concentrator should provide enough solar energy for the Stirling engine, which means 

energy matching of the concentrator and the Stirling engine. The other is that the absorber flux 

distribution needs to be reasonable.  

2.1. Basic parameters of dish concentrator 

The global coordinate system O-xyz is built at the top of point O on the parabolic surface, the z axis 

points to the focal point F. The surface of the reflect mirror can be defined as 2 2 4x y fz  , where f is 
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focal radius. 

The concentrator structure composed of twelve truss beams in uniform distribution. The mirror is 

not installed between the two truss beams in the below part to avoid the mechanical interference 

between the concentrator and the supporting pillar (diameter 800 mm). The angle 
m  is 30°. The 

supporting truss was fixed on the concentrator centre position. The mirror can't be installed in this 

centre position (the corresponding radius R2=0.90 m). While the section size of Stirling heat engine is 

1200 mm×1400 mm (wide × high, Figure 1), the shadow caused by the Stirling engine is located in the 

circular area radius, which can not cause additional shadows for the reflection mirror. There is a 

certain gap between the concentrator mirror units. This gap is 20 mm along the radius direction and 25 

mm along the circumferential direction which means reflection mirror gap rate km is 0.15, and the 

convenience of mirror installation and also reduces the wind load by allowing part of the wind passing 

through the gap (figure 4(a)). The effective concentrator aperture area Adish is expressed as:  

2 2

1 2
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Figure 1. Structure and geometrical parameters of the heat absorber: a1) picture of the Stiring 

Biopower Flexgen S260, a2) CAD design model of the heat absorber, a3) picture of the heat absorber 

front view and b) geometrical parameters of the heat absorber.  

 

According to the energy conservation equation (input energy equals output energy) of the DS-CSP, 

the rated power ERa is given as: 

 0Ra dish DSE A W                                                                 (2) 

Where W0 is the direct normal irradiation (unit is W/m
2
); DS

 
is the designed value of the DS-CSP 

solar-to-electricity efficiency (SEE).  

In this work, the 38 kW DS-CSP system will build in the Xiangtan electric group factory, China 

(east longitude 112.95°, north latitude 27.87°). The Xiangtan region solar irradiation ability has been 

evaluated and finally determined the DNI design value is 750 W/m
2
. The operated DS-CSP system 

SEE value (19.0%~29.4%) [1-3] has been referenced and the DS
 
will be directly set at 25% that is a 

typical efficiency value in the DS-CSP system engineering applications. So the concentrator radius R1 

is selected as 8.850 m to achieve a rated power of 38 kW for the DS-CSP system. 

2.2. Structure and parameters of the absorber 

In this paper, an engine with four cylinders double-acting Stirling engine and hydrogen as the working 
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medium (Stirling Biopower Flexgen S260, α-type) is used. The absorber structure parameters are 

shown in Figure 1 and the absorber are composed of a metal coil and a secondary reflection cone.  

The flux distribution of absorber is conducted using a simulation software OptisWorks 2012 based 

on Monte Carlo Ray Tracing Method [19,20]. Due to the metal coil arranged densely in the absorber 

and the tube diameter is small, hence it is difficult to directly calculate the flux distribution on the 

metal coil surface. In this research, the metal coil is simplified into a red surface f1 and the secondary 

reflection cone is simplified into a gray surface f2. In Figure 1(b), the coordinate system F-x1y1z1 

parallels to the coordinate system O-xyz is established on the focal point F. The coordinate system F2-

x2z2 and F3-x3z3 are established respectively for calculating the generating lines of the metal coil and 

the secondary reflection cone and can be expressed as: 

2

2 2 20.0020( ) 0.0337 111.12x z z                                             (3) 

2

3 3 30.0042( ) 0.3730 125.41x z z                                              (4)
 

2.3. Absorber flux distribution 

The solar half angle 4.65 mrad is considered in this study. We assume the absorption rate of the metal 

coil surface is 0.75 and reflectance of the cone surface is 0.70 and W0 is 800 W/m
2
. The concentrator 

reflection mirror using the thickness 4.0 mm silver mirror glass and reflectivity is 0.95. The totally ray 

tracking number is 20 Mrays during the calculating process according to the independence study. The 

results of the absorber flux distribution are shown in Figure 2 and Figure 3.  

 

  

Figure 2. The flux distribution on the metal coil 

surface in heat absorber (R1=8.85 m, f=9.49 m). 

Figure 3. The flux distribution on the metal coil 

surface (the cross section where the arrow is). 

 

As seen from Figure 2, the „lack area‟ exists in the metal coil surface flux distribution, which is 

resulted from the existence of m . The solar energy is concentrated on the bottom area of the metal 

coil (Figure 1(a)), which shows two peaks distribution (figure 3). Figure 3 is the flux distribution of 

the cross section where the arrow is shown in Figure 2. The concentrator radius and focal length 

significantly affect the flux distribution on the metal coil surface, but still has two peaks distribution 

characteristics. The focal length is larger and metal coil surface energy is more concentrated to the 

bottom area when the dish concentrator radius is fixed. This is easy to form the flow stagnation zone at 

the bottom area, which in turn reduces the convection heat loss. Considering the weight of the Stirling 

engine (~1600 kg), larger focal length f will lead to significant deformation of the support truss which 

will further affect the absorber receive the solar energy. Finally, we select the concentrator focal length 

f is 9.49 m (rim angle is 50°) when the dish concentrator rim angle is approaching to 45°.  

3.  DS-CSP system frame structure design 

Dish concentrator frame structure was mainly used to support the reflection mirror and Stirling engine 
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for realizing the concentrator tracking the sun position. This frame structure design includes the 

concentrator structure, supporting structure, Stirling engine supporting structure and two-axis tracking 

mechanism. In this paper, such factors as the manufacturing, construction, maintenance and 

environmental climate (such as wind and dust) are comprehensive considered by us. The 17.70 m 

single dish plus single pillar supporting parabolic dish concentrator system was designed.  

3.1. Concentrator selection 

In the design of the big dish concentrator structure, the SBP Company used single dish concentrator 

with tensioned membrane structure [9], which ensured a high quality mechanical structure while the 

concentrating performance under wind load is difficult to guarantee. This makes the structure difficult 

to be implemented in the windy climate area in China. The use of the multi-surface dish concentrator 

can increase the drafty performance [20],[22], but the gap among the mirror units reduced the active 

concentrating areas. In order to guarantee a certain concentrating area, space size of concentrator will 

be larger which is not suitable for large concentrators.  

Therefore, we choose the single parabolic surface concentrator which normally consists of the 

rectangle or sector mirror unit (use glass reflective mirror). Using rectangle mirror units can generally 

form an approximate parabolic surface concentrator, such as the Serial #3 unit in SES Company [2]. 

However, the sector mirror units could ensure a accuracy parabolic surface concentrator [23],[24], 

which can effective reduce the number and the type of the concentrator mirror units. Such as the 

SunCatcher
TM

 unit improving designed by the SES company, the number of the mirror units are only 

40 [2]. In this paper, our single concentrator will use this sector mirror unit (Figure 4(a)).  

 

Ring bar

Mirror unit
U-shaped body

Truss beam

(a) Mirror unit(b)

(c)

Fixed of the mirror unit

 

Concentrator

Pillar 

Supporting truss 

Tracking device 

Stirling engine

(d)

 

Figure 4. DS-CSP frame structure: a) CAD design model for the concentrator, b) mirror units 

structure, c) installation of the mirror unit, and d) CAD image of the DS-CSP system.  

3.2. Supporting structure selection 

Regarding the support structure of the dish concentrator system, the large dish concentrator usually 

uses the disk rail support due to the superior bearing characteristics in existing literatures [9][25][26]. 

For example, the Australian National University successively established a 400 m
2
 and a 500 m

2
 dish 

concentrator [25][26], and the SBP company implemented the 50 kW DS-CSP unit with such support 

structure [9]. The disk rail has advantages in stress characteristics. However, the disk rail support still 

has some disadvantages. For instance, the structure should be protected from the dust and sand and 

additional weights are needed to balance the dish concentrator system. While the single pillar support 

form shows advantages in easy construction and good sealing performance, which requires less 

maintenance and the balance of the system can be easily achieved by the structure parts mass optimize 

allocation. Due to the advantages of such structure, it is widely used in various CSP projects [2,3]. 

Hence, the 38 kW DS-CSP system in this study also utilize the single pillar support (Figure 4(d)).  
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3.3. Structure design of dish concentrator system 

Modular design is considered in present study in order to have convenience in manufacturing, 

transportation, and installation. Concentrator is connected with twelve truss beams to the centre U-

shaped body by bolt (Figure 4(a)). The adjacent truss beams are connected through the ring bar which 

further forms a space truss structure to support the mirror units. Mirror unit is an aluminium 

honeycomb panel matrix with polyurethane pasted on the upper surface. The polyurethane is bended 

into parabolic surface with the reflection mirror surface adhesive to the polyurethane surface (Figure 

4(b)). This structure can improve the rigidity of the mirror unit structure. The mirror unit is fixed in the 

space truss structure by the ball joint bolt and the space position of the mirror unit is controlled by 

adjusting the length of the bolt (Figure 4(c)).  

The single dish plus pillar supporting structure is designed for the DS-CSP system and is shown in 

figure 8(d). The front end of the supporting truss is fixed on the concentrator U-shaped body. The 

Stirling engine is installed at the end of the supporting truss (absorber is at the focal position of the 

concentrator), and the supporting truss is connected with the tracking device mounted on the top of the 

pillar. The tracking device uses the elevation angle plus azimuth angle two-axis tracking method 

(Figure 4(d)). The tracking device is a combination of the azimuth angle rotating mechanism and lead 

screw expand and contract mechanism. Both of these two mechanisms are equipped with worm-gear 

motor to lock the frame structure when the external load applied. The specialty of this design is that 

the lead screw is jointed at the lower part of the pillar (normally at the top of the pillar, Serial#3 unit 

for example [2]). The novel design could lead to the benefit that the lead screw will not cover the focal 

axis of the concentrator and it is convenient for the calibration of the concentrator focal axis when the 

Stirling engine is installed. Moreover, it can increase the lead screw expand and contract mechanism 

transmission angle which in turn reduce the push-pull force of the lead screw.  

It is crucial to make sure that there is no mechanical interference between the lead screw and the 

support truss when the lead screw is expanding and contracting. The concentrated system gravity 

center should be coincidence with the supporting pillar axis which could be achieved by optimizing 

the allocation of the total mass weight of the concentrator and the supporting truss. This can be 

effectively obtained in the Pro/E software platform. The main parameters of the DS-CSP frame are 

shown in table 1.  

 

Table 1. The main parameters and performance index for the 38 kW DS-CSP system. 

Name Numerical or model  

System design value Rated power is 38 kW, DNI design value is 750 W/m
2
, solar-to-electricity 

efficiency design value is 25%.  

Stirling  system Stirling Biopower Flexgen S260, α-type, four cylinders double-acting  

Stirling engine, working medium is hydrogen, mass is 1600 kg, receiver 

window diameter is 400 mm. 

Dish concentrator  Aperture area is 204 m
2
, diameter is 17.70 m, focal length is 9.49 m, rim 

angle is 50.0°  

Number of mirror units 164 

Total mass 25.2 tons (Do not include the foundation) 

Tracking mode Elevation-azimuth double-axis tracking device, open loop control system 

Output function Net power output=0.1003×DNI-36.129; DNI∈[460, 761] W/m
2
  

Peak power 40.5 kW (The effective total aperture area is 200 m
2
, DNI is 761 W/m

2
,   

and SEE is 26.9%) 

4.  Concentrator system installation and test  

4.1. Installation of the mirror unit  
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The optical performance of the concentrator is directly decided by the precision of the mirror unit 

installation. A laser positioning device is used to guide the installation of mirror units (Figure 5(a)) 

and the schematic of the laser device are shown in Figure 5(b).  

 

Screw rod lifting device

Rotary disk device

(Installed laser)

U-shaped body

Hand wheel A

Hand wheel B

(a)

  

Laser
Δ h Mirror unit

Li

LjLaser
(b)

 

Figure 5. The installation and positioning of mirror units: a) laser positioning device and b) working 

principle.  

Pillar
(a) (b)

 

             

Figure 6. The construction site: a) mirror units installation, b) connecting process of concentrator to 

the pillar, c) rear view and d) front view.  

 

The detailed implementation steps are as listed follows: 1) pose concentrator truss structure open 

upward and mark the about-to-install parabolic mirror‟s focal axis (Z-axis). The make the screw axis 
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coincidence with the z-axis and fix the laser device on the center of the U-shaped body, 2) rotating the 

hand wheel A to lift up or down the screw to mark parabolic reflection mirror surface top point (the 

origin of coordinate O) and then rotate the hand wheel B to point the original position (X-axis) at the 

parabolic reflection mirror surface (hand wheel A and hand wheel B also have the rules that can 

accurate fix the desired position), 3) adjust the hand wheel A and B to make laser beam align to the 

install mirror angular point to the ideal installation mirror unit position, and 4) tune the length of the 

mirror unit ball joint bolt to make sure that the angular point of the mirror unit is aimed at the laser 

beam. Repeat the step 3) and step 4) to determine the position of the four mirror unit angular points to 

complete the installation of the mirror units. Once all the mirror units are installed (Figure 6(a)), fixing 

the concentrator with the support truss and then combine them with the tracking device on the top of 

the pillar (Figure 6(b)). The pillar is mounted around the concentrator construction area (Figure 6(a)). 

The DS-CSP system is built in the factory of the Xiangtan Electric Manufacturing Group (Figure 9).  

4.2. Concentrator performance test  

4.2.1. Flux distribution on focal plane. In order to determine the concentrator of the focal spot 

distribution and tracking performance, the simple and effective method is to install a flat receiver in 

the concentrator focal plane [25] for receiving the solar energy reflected from the concentrator (to 

form a focal spot). The performance of the concentrator was evaluated by the focal spot brightness 

distribution and geometrical shape.  

In this paper, a water-cooled circular target (diameter is 720.0 mm) is designed to calibrate the 

focal plane in terms of test the focal spot geometry and two-axis tracking performance (Figure 7). 

Under the sun tracking condition, a CCD camera (Sony A99) is used to take focal spot image from the 

water-cooled target plane (Figure 7(c)). Since the water-cooled target surface is lack of Lambert 

features, we can‟t precisely know the absolute focal spot flux distribution. However, it is sufficient for 

us to investigate the geometry and size of the focal spot. The results show that the focal spot is in 

approximate circular shape and the focal spot center is coincident with the center of the water-cooled 

disk target. This indicates that the sun tracking performance is well (the tracking control is open loop 

based on the astronomical algorithm). The diameter of the focal spot flare highlighted area is 272.0 

mm (not including the halo area) which is less than the diameter of the absorber receiver window 

(Rc=400 mm). The absorber can receive most of the concentrated solar energy which can be proved in 

Figure 9.  

 

 

Figure 7. Pictures of the water-cooled target test: a) water-cooled target back view, b) water-cooled 

target front view, and c) focal spot (focal plane position). 

4.2.2. Flux distribution on absorber imitation device. The absorber metal coil flux distribution 

homogeneity performance influenced the Stirling engine running performance, which including two 

aspects: (1) the absorber metal coil is composed of four integrated tubes (Figure 1 a2), each integrated 

tube connected with one Stirling engine piston chamber for providing energy to the piston movement. 

When four integration tubes receive the difference total heat, the four piston thrust will be different 

which can cause unstable phenomenon in the S260 Stirling engine operation process. Therefore, the 

requiring of the four integration tubes receiving the equal total energy. This is a macro requirement for 
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the metal coil flux distribution homogeneity. (2) The metal coil working in high temperature and high 

pressure environment. But the metal coil hydrogen working medium heat exchanging ability is limited, 

the local metal coil area receiving too much energy will cause the metal coil burning or the thermal 

stress fracture accident caused by large temperature gradient [24]. Hence, the microcosmic 

requirement for the flux distribution homogeneity on the metal coil is to avoid local "hot spots". 

However, water-cooled target experiment can determine the focal plane flux distribution and it can 

not reveal the absorber flux distribution on the metal coil surface. Therefore, in order to ensure the 

safe and smooth operation of the S260 Stirling engine, we put forward a new method for evaluating 

the absorber surface energy distribution. An absorber imitation device (metal material is Q235) is 

designed and implemented based on the shape of the S260 Stirling engine absorber cavity (Figure 

1(b)). The absorber imitation device is installed on the focal position of the dish concentrator (figure 

12(a)) and heating performance test (Figure 8(b) and Figure 8(c)) was conducted. It can be seen that 

melting was detected on the surface of the absorber imitation device and local surface temperature 

could be larger than 1493°C (the metal Q235 melting point is 1493°C). The brightness distribution 

within the absorber imitation device has the similar behaviour with the results shown in Figure 2(a) 

and the energy mainly focus on the absorber bottom area. The absorber inner surface receiving the 

solar energy distribution is a circular, the energy distribution is homogeneous and without obvious 

local “bright spot”, which reached to the absorber energy uniformity requirements. Besides, the 

brightness distribution in Figure 8(c) shows that the reflection cone area has the extremely lower 

irradiance due to the reflective cone surface reflected the incoming sunlight into metal coil surface and 

increase the energy of the metal coil surface which shows the functionality of the reflection cone.  

It indicates that both the installation precision and two-axis tracking precision of the dish 

concentrator system meet the operating requirements and Stirling engine can be installed and then the 

DS-CSP system can make trial operations.  

 

 

Figure 8. Test of the absorber imitation device. 

5.  Power generation operation and analysis  

The Stirling engine can be started only when the absorber working temperature is high enough (400℃ 

for the hydrogen (working fluid of the engine) for the 38 kW DS-CSP system in present study) which 

is the precondition for the operation of the DS-CSP system.  

As shown in Figure 9, the first field test of the 38 kW DS-CSP system was conducted on 19th 

December 2014 with the two inner loops of the mirror covered with shelters. Due to the discontinuity 

of solar irradiation resulted from the clouds on that day, the hydrogen temperature will decrease 

accordingly and the Stirling engine will stop when the hydrogen temperature is lower than 400℃. The 

Stirling engine will be started again then the hydrogen temperature in the metal coil is up to 400℃
once the cloud passing away. A series of the Stirling engine start-stop process prove that the 38 kW 

DS-CSP system can automatic fit cloud cover weather. The Stirling engine automatic start-stop 

process in controlled by control system and the automatic control is depended on the feedback of the 

metal coil hydrogen temperature. The absorber detailed picture during the working condition is given 

in Figure 9 which can be seen that most of the absorber aperture could capture most of the 

concentrated solar irradiation. The adjustment and stable test of the DS-CSP control system are 

accomplished in 8 months. The relationship between the DS-CSP generation power and the DNI is 
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measured and presented in figure 10 under clear weather with the total concentrated area is 200 m
2 

(real time the DNI measurement is achieved by using the GEONICA METEODATA-3000 system, 

this system was from Geonica company). The main parameters and performance index for the 38 kW 

DS-CSP system is shown in table 1.  

 

 

Figure 9. Pictures for the DS-CSP system power operation for the first time (19 December 2014). 

 

As seen from the power generation curve of the DS-CSP system in figure 10(a) (October 26th, 

2015), the DS-CSP system continuous operation for 6.5 hours and the power generation is larger than 

35 kW during the time from 11:00 to 15:00 (excluded the cloud cover time). When the DNI maximal 

value is 761 W/ m
2
 the DS-CSP system power can reach up to 40.5 kW and the SEE is 26.6% (at 

13:25). In the figure 10(b) (October 15th, 2015), during the time period of 11:00 to 13:10, the DNI 

basically stabilized around 750 W/m
2
 and the DS-CSP power value is larger than 38 kW and SEE is 

25.3%. The DS-CSP system testing operating SEE value is higher than the design value 25%. Results 

show that the concentrator design can effectively match the S260 Stirling engine power and the design 

of the absorber for such Stirling engine is reasonable, which also validates that the S260 Stirling can 

be well coupled to a solar dish concentrator for power generation. In addition, the concentrator has 

some optical losses due to the dust coverage, which indicates that the DS-CSP system could achieve 

even higher SEE. Note that when the elevation angle is small the DS-CSP system will be shadowed by 

the nearby buildings that the DS-CSP system can only operate up to 15:41 in figure 10(a).  

According to the operating data, the relationship between the DS-CSP system net power output and 

the DNI value is obtained in figure 10(c). The data originated from four days‟ operation (8th, 15th, 

17th, and 26th October 2015) and the unstable data are not included during the Stirling engine shut-up 

and shut-down. It can be seen that the DS-CSP system net power output has linearly proportional 

relationship with the DNI value, and this is the same to the DS-CSP system power output curve fitted 

by Mancini et al [3] (DS-CSP system power output curve comparison can be seen in Figure 11). The 

38 kW DS-CSP system net power output fitting linear function is y=0.1003x-36.129, where y is the net 

power output of the DS-CSP system (unit is kW), x is the DNI value. The range of the x is between 

460 W/m
2
 to 761 W/m

2
 (figure 10(c)). This net power output function can be used for 38 kW DS-CSP 

system output power under different DNI values. Only when we know the power station region solar 

irradiation data throughout the year can we evaluate the annual power generation according to the net 

power output function and then assess the economy of the power station construction and operation. 

This is a very important evaluation work during the early construction period of the business DS-CSP 

system.  
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(c) 

Figure 10. Operating data for the 38 kW DS-CSP system (concentrated area is 200 m2): a) power 

generation curve on October 26th, 2015, b) power generation curve on October 15th, 2015, and c) DS-

CSP power generation curves for 8th, 15th, 17th, and 26th October 2015.  
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Figure 11. DS-CSP system power output curve comparison: a) power output curves for various 

systems, and b) power output curve slope comparison. The curves are all acquired form literature 

(Mancini et al [3]) and the test data for our 38 kW DS-CSP system was obtained from the date (8th, 

15th, 17th, and 26th October 2015). Where x is the DNI value and y is the power output of the DS-

CSP system, the range of x is between the line‟s both endpoints respectively.  

 

In Figure 11(a), the 38 kW DS-CSP system net output power reached to 38 kW when the DNI 

value was 750 W/m
2 

and the absorber metal coil would be overheated-damaged when the DNI value 

was over 750 W/m
2
, while other four kinds of DS-CSP system could reach the rated output power only 

when the DNI was about 1000 W/m
2
. The Stirling engine has not been full played when the DNI value 

was less than 1000W/m
2
. Since the DNI value is changing with the time, the absorber metal coil 
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overheated and the Stirling engine lack of heat supply problems would happen. For the metal coil 

overheated problem, we have figured out a solution: installing the glass cover on the cavity absorber 

(Figure 1 a1) receiver window position to form a closed space in the absorber. When the metal coil 

temperature is high, pump the air into the absorber to properly cool the metal coil (made the cold air 

into one side of the absorber cavity, made the hot air out of the other side). The outflow hot air could 

also be used to heat the water that can achieve the solar power joint supply. This case could fit the 

single family or farm offering electric power and heating. Besides, developed the absorber with energy 

storage function is the best way to solve this problem, because it will not only satisfy the commercial 

power station energy storage requirements of DS-CSP systems but also could solve the absorber 

energy overheated-damaged problems. For the DS-CSP system lack of solar energy supply problems, 

it could be solved by the method of gas and solar energy complementary power generation. The key is 

to design an absorber that not only could receive the solar energy but also could receive the heat from 

the gas combustion.  

6.  Conclusions  

In this paper, the rated power 38 kW DS-CSP system was developed. The parabolic concentrator 

aperture area is 204 m
2
 with 8.85 m in radius and 9.49 m in focal length and the heat engine adopted 

the Stirling Biopower Flexgen S260. This paper forms a general method and process of the structure 

design, mirror installation and optics testing, which could provide the reference for the DS-CSP 

system design and development. The outcome has been concluded in the following points: 

The 38 kW DS-CSP system has a well recorded working performance which shows the net output 

power as high as 38.0 kW under the DNI of 750 W/m
2
 and the SEE of 25.3% accordingly. The 

maximum recorded net output power is 40.5 kW and the corresponding SEE is 26.6% with measured 

DNI of 761 W/m
2
.  

The net power output of the 38 kW DS-CSP system is linearly proportional to the DNI value and 

the fitting function is Net power output=0.1003×DNI－36.129, DNI∈[460, 761] W/m
2
. The linear 

function can predict the annual total generation power of the 38 kW DS-CSP system, which could 

guide the DS-CSP system station construction economic evaluation. 

The absorber imitation device testing method was presented, which could assess the flux 

distribution on the absorber cavity surface. The test results show that the brightness distribution within 

the absorber imitation device has the similar behaviour with the absorber flux distribution simulation 

result and the energy mainly focused on the absorber bottom area. While the reflection cone area 

reports much lower luminance, the reflection cone could effectively reflect the incoming sunlight into 

metal coil surface and this could conducively improve the absorber thermal efficiency.  

7.  Future work 

The space size and mass of the dish concentrator in DS-CSP system are large. The structure 

deformation is easy to occur under the effect of wind load and gravity load further to affect the optical 

performance of the dish concentrator [27]. In order to reduce the mass and manufacturing cost of dish 

concentrators, it is necessary to carry out lightweight design of the frame structure on the basis of 

ensuring optical performance. Next, in the large-scale DS-CSP power station, the proximity of the DS-

CSP system will generate light shading and cloud cover against the sunlight, which will affect the 

normal operation of the DS-CSP system. Therefore, the layout optimization of the DS-CSP system in 

large-scale power stations is especially important. Besides, large dish concentrators are usually 

assembled with many mirror units forming the parabolic reflecting mirrors and each mirror unit must 

be accurately fixed in a present position within the truss structure. If facet alignment error exists after 

the mirror unit is installed, the shape accuracy of the parabolic concentrator surface can be affected 

[28]. Therefore, correctly aligning the mirror units in dish a concentrator while minimizing installation 

error is therefore of great importance to overall performance. The development of an effective mirror 

alignment method or alignment tool to guide mirror facet alignment during operation would be 

extremely valuable [29]. 
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