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Abstract. During tribological contact’s life, different deformation paths lead to the formation 

of high deformed microstructure, in the near-surface layers of the bodies. The mechanical 

conditions (high pressure, shear) occurring under contact, are reproduced through 

unconstrained High Pressure Torsion configuration. A 3D finite element model of this HPT 

test is developed to study the local deformation history leading to high deformed 

microstructure with nominal pressure and friction coefficient. For the present numerical study 

the friction coefficient at the interface sample/anvils is kept constant at 0.3; the material used is 

high purity iron. The strain distribution in the sample bulk, as well as the main components of 

the strain gradients according to the spatial coordinates are investigated, with rotation angle of 

the anvil. 

1.  Introduction 

During tribological contact’s life, different deformation paths lead to the formation of high deformed 

microstructure in the near-surface layers of the bodies. Those structural changes occurring at the near 

surface are one of the natural responses of materials to tribological stresses, i.e. temperature, 

hydrostatic pressure and shearing gradients. This response is named Tribologically Transformed 

Structures (TTS) [1–3]. In most cases, the TTS are often described as submicrometric structured near-

surface layers produced at contacts [1-5]. Initially attributed to flash temperatures generated by 

frictional heating at the contact zone, followed by subsequent quenching [5, 6], several studies have 

shown that the temperature increase was often too low to explain these phase transformations [7-10]. 

Thus these transformations could result from high strain under high hydrostatic pressure [9-12] and 

even at low temperatures. In parallel, among the Severe Plastic Deformation (SPD) processes [13], 

High-Pressure Torsion (HPT) experiments are efficient to obtain materials with ultra-fine structures 

[14-17] or phase transformations in materials. Thus, carrying out HPT tests seems to be an efficient 

means of investigating TTS initiation mechanisms under severe shearing conditions and 

simultaneously analyzing and controlling their formation under conditions that can be controlled with 

greater precision than in a contact. 

Furthermore, in the case of the unconstrained version of HPT, previous experimental work [18, 19] 

has shown the development of a refined structure after only one revolution, for two carbon steels 

materials and high purity iron (Fe 99.9999%) tested on such apparatus, at room temperature. The 

evolution of the microstructure has been correlated with the contact conditions (localization of the 

http://creativecommons.org/licenses/by/3.0
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sliding or adhesion zones between sample and anvil surfaces) [20, 21]. In the present work, the 

unconstrained HPT process simulates numerically the HPT tests. The material is a high purity iron (Fe 

99.9999%). The 3D finite element model developed allows to study locally the specificity of the stress 

and strain loading cycles within the areas where TTS are formed during these tests. To calculate 

significant stress and strain cycles in the right range of tribological conditions, this modeling takes into 

account both the contact conditions (friction at the sample / anvil interfaces) and the material behavior 

law in an adequate range of pressure and stresses. 

2.  3D finite element model 

2.1.  Model geometry 

In order to investigate the stress and strain results but also the strain gradients in the sample volume, a 

3D model (figure 1) was developed with commercial software (Abaqus 6.9) to simulate the cylindrical 

sample compressed and sheared between two anvils. The two cylindrical tungsten carbide (WC) anvils 

were considered to be rigid, with mass and inertial moment. The anvil geometry used in these 

simulations was based on the unconstrained HPT set-up geometry. The anvils were smooth with a 

diameter of 3.2mm. The sample was 3.0 mm in diameter and 0.5 mm thick. The model parts were 

meshed with 8 noded-50 µm elements (C3D8R elements) for the samples and 100 µm elements for the 

anvils. The simulations, through a quasi-static analysis, were used to examine the processing operation 

up to a quarter revolution of the bottom anvil. The model was assuming an ALE (Arbitrary Lagrangien 

Eulerien) numerical scheme providing the displacement variable as the sum of both the material and 

the grid motion in order to: 

- satisfy the mechanical balance equilibrium, 

- minimize the mesh distortion according to criteria defined on aspect ratios and angles of the 

elements of the mesh. 

Practically in the explicit version of the Abaqus software, a smooth procedure of the mesh is 

processed at a frequency of 10 increments (default value) to respect the limit defined in terms of 

distortion of the elements which the topology was constant during whole the calculation. The explicit 

formulation of the problem implied an averaging procedure of the output variables to avoid numerical 

noise in the solution. Finally the mass scaling procedure applied in the prescribed range enabled to 

decrease significantly the CPU time at completion. 

 

    

Figure 1: (a) Schematics of HPT model, (b) 3D view, (c) Behaviour law for pure iron 

 

2.2.  Material behaviour and boundary conditions 

An ultra-high purity iron Fe was studied: the Young’s modulus E was 210 GPa, the Poisson ratio υ 

was 0.3, the density was 8.7 10-9 t/mm3 and the yield stress was 120 MPa. The material plastic 

behaviour law was not known under the test conditions, i.e. coupling between high pressures and 

strong shear deformation. Thus, in this work, the material behaviour was elasto-plastic and based on 

flow curve determined experimentally through compression tests under hydrostatic pressure up to 

0.8 GPa. The stress–strain curves used are plotted in figure 2. In real HPT process, slippage occurs 
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between the anvils and the sample. One Coulomb friction coefficient value was chosen and equal to 

0.3, based on previous results [20-21]. 

2.3.  Description of a numerical test 

In the first load step, the target vertical load (3.5kN) was applied via the bottom anvil through a 

vertical displacement along Y (in exactly the same way as in the experiment). This load corresponds to 

a nominal pressure P of 1 GPa, on a circular 3 mm diameter disk. Throughout the simulation, the top 

anvil was prevented from moving or rotating. In the second step, the vertical displacement was 

stopped and the normal load was maintained constant while small incremental rotation around the axis 

(Y) was imposed on the bottom anvil. In the last step the rotation was applied up to the 3 target 

rotation angles: 1°, 30° and 90° of anvil rotation. 

3.  Results and discussion 

Previous experimental results [18, 20] have shown that the transformed layers exhibiting the finest 

microstructures were produced in a specific sample volume linked with sliding/adhesion contact 

conditions (Figures 2a, 2b). The adhesion zone was characterized by a radius rA. The surface 

conditions thus govern the location of material transformation in the bulk. Different paths (a path is 

composed of consecutive nodes) were thus defined, in relation to previous experimental work 

highlighting the TTS location within the sample [18, 20] (Figure 2c). The stresses and strains could 

thus be calculated during a simulation at different depths and along radius within the sample following 

these paths, at a given rotation angle.  

        

Figure 2: Sliding/adhesion contact. (a) The adhesion radius rA decreases with increased   (b) 

Schematics evolution of the microstructure refinement (pink) based on previous experimental results, 

(c) Location of the chosen paths for the present numerical model 

 

The evolution of contact conditions was calculated at the interface. The contact pressure 

distribution (CPress in abaqus software) was presented for 90° of anvil rotation (Figure 3a). For 3 

different angles of rotation, the relative sliding between the anvil and the sample was quantified along 

“path-sup surface”. An adhesion zone could thus be highlighted (Figure 3b); it decreased with 

increasing of (°).  

The history of the Von Mises equivalent plastic strains ε (variable PEEQ used in Abaqus software) 

was also plotted along radius r and through thickness of the sample, for the different paths and for 

different anvil rotation angle (Figure 4). For a given depth, these strain were low at the centre of the 

sample and at the periphery, but reached a maximum value around a radial position close to the 

transition area between the adhesion and the sliding zones. The radial location of the maximum 

approached the centre of the sample when the angle increases. For a given radius, the strain values are 

maximal in the skin.  

During the unconstrained HPT process pure shear strain (εz) occurred but also a shearing strain 

(εr) at the frontier between the sliding and the adhesion zones, considering that elongation was 

possible in the radial direction. Thus those strain components were plotted along the different paths 

(Figures 5, 6, 7). The strain components reached a maximum value and their radial positions draw 
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closer to the transition area between the adhesion and the sliding zones. While z evolution stabilized 

between 30° and 90° of anvil rotation (Figure 5), r values increased with increase of °), especially 

in the near-surface layer (Figure 6). The increase was closely linked to rA evolution. rr increased 

continuously along the different paths r- with increase of Figure  in the whole sample. 

 

Figure 3: (a) Contact pressure distribution for  =90°, (b) Evolution of the adhesion zone 

 

Figure 4: Von Mises equivalent plastic strain for 3 angles of rotation 1°, 30° and 90°, along different 

paths (see figure 2c) 

 

 

Figure 5: Plastic strain z for 3 angles of rotation 1°, 30° and 90°, along different paths (see figure 2c) 

 

Previous work [20] highlighted strong equivalent plastic strain values coupled with large equivalent 

strain gradients in both radial and axial directions, where TTS were located. To go further in the 

mechanical analysis, the main components of the strain gradients according to the spatial coordinates 

were calculated in the present work (tables in the figure 8). The gradients were obtained as the average 

values of the strain variation (PEr, PEz, PErr) along the considered coordinates (r or h). These 

table provided an estimation of the curvature. The strain gradients (i. e. components of the curvatures 

tensor) were maximal in the areas in which “TTS” were observed (Figure 8). The gradients of rwere 

the highest ones within whole the sample, especially in the axial direction, and below the adhesion 

zone. Maximal gradients of rr values were linked with the edge sliding/adhesion zones. Nevertheless 
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the accurate values can be obtained by the calculation of second gradients of the displacements (i.e. 

curvature) [22], 

p

li
ij jkl

kx


 





 (m/m2); this work is in progress. 

 

Figure 6: Plastic strain r for 3 angles of rotation 1°, 30° and 90°, along different paths (figure 2c) 

 

Figure 7: Plastic strain rr for 3 angles of rotation 1°, 30° and 90°, along different paths (figure 2c) 

4.  Conclusion 

The objective of the present work was to investigate numerically the unconstrained HPT process 

through a 3D finite element model. Gradients of the strain components in both radial and axial 

directions have been highlighted. Those gradients coupled with high strain seem to be a condition 

necessary to form TTS. This model will allow to investigate in an accurate way the strain paths and 

curvatures, in relation with the developed microstructures during a test and their localization in the 

sample. 
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Figure 8: Strain gradients components 
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