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Abstract.
We present an algorithm for Monte Carlo simulation of particle trajectories through rough

interfaces. The microscopic topography of the rough surface is assumed to be described by an
altitude map in a dense rectangular grid. The tracking algorithm has been implemented in a
Fortran subroutine package, which is coupled to the code system PENELOPE/PENEPMA
to perform Monte Carlo simulations of X-ray emission from samples with rough surfaces
irradiated by electron beams. To validate the numerical procedure, electron probe microanalysis
(EPMA) simulations of an ideal sample with periodic surface roughness have been performed
by using 1) the PENGEOM geometry package of the PENELOPE code system and 2) the new
tracking algorithm. The results from the two simulations are found to be equivalent, that is,
their differences are generally less than the associated statistical uncertainties. Results from
simulations of samples with realistic rough surfaces are also presented.

1. Introduction
Conventional quantification procedures for electron probe microanalysis (EPMA) assume flat
bulk specimens. However, in some cases specimens must be analysed without any surface
preparation either because they cannot be destroyed (e.g., cultural heritage objects) or because
the information of interest is in the surface itself (e.g., corrosion studies). The analysis of
rough targets is challenging because of the dependence of the measured line intensities on the
topography of the sample surface [1,2]. The same type of difficulty is found in X-ray fluorescence
(XRF) [3–5], and in the transport of light through scintillating crystals and optical systems with
rough interfaces [6].

The effect of surface roughness on radiation transport processes, can be studied by means
of Monte Carlo simulation [7, 8]. In EPMA and electron microscopy, the area of the sample
that is effectively probed has a limited extension, and the relevant portion of the surface can
be described numerically, e.g., by using information from stereoscopic or confocal microscopy.
Generally, though, the extension of a rough surface is too large to allow a microscopic
description, and one must assume that the surface roughness is “homogeneous”, in the sense
that the statistical roughness parameters do not change appreciably with position. Assuming
that curvature is not too large, the rough surface can be described as the combination of a
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mathematical (smooth) surface and a numerical model representing a finite portion of a nearly
planar rough surface with characteristics similar to those of the real surface.

In this study we describe tracking strategies to account for the effect of roughness of the
sample surface (and of interfaces between different materials) within a conventional Monte Carlo
transport code for material structures defined by mathematical surfaces. In the simulations
presented below we use the Monte Carlo code system penelope [9], which describes the material
system where radiation propagates by using constructive quadric geometry [10], that is, as a set
of homogeneous bodies limited by quadric surfaces.

A rough surface is assumed to be defined within a rectangular cuboid, which will be referred
to as “the box”, by means of an altitude map on a dense two-dimensional rectangular grid.
A continuous representation of the rough surface is obtained by triangularisation of the altitude
map. For the simulation of radiation transport through rough surfaces we have adopted a simple
scheme in which the neighbourhood of the mathematical surface is replaced by the rough surface
box. During simulation, when a particle reaches a mathematical surface that corresponds to
a rough interface, an external subprogramme is called to perform the tracking through the
associated surface box. Control is returned to the main programme when the incident particle
and any secondary particles generated during the process have left the box. This scheme allows
keeping the structure of the conventional simulation code practically unaltered.

Simulations of EPMA measurements, that is, of X-ray emission from targets bombarded by
electron beams, can be performed with the Fortran main programme penepma [11], which uses
penelope as the simulation engine and the quadric geometry package pengeom [10]. To allow
consideration of targets with a rough surface, we have written a new programme, named epmar,
which generates the same information as penepma and uses the present tracking algorithm to
describe the transport of particles through the rough irradiated surface. To verify the correctness
of the proposed tracking algorithm, we consider homogeneous targets with an artificial rough
surface consisting of a periodic array of square pyramids. This artificial sample structure can
be described by both penepma and epmar. The results from the two codes are found to agree
within statistical uncertainties. We present also results from epmar simulations with a realistic
rough surface.

2. Tracking of particles near a rough surface
When the particle being transported approaches a mathematical surface representing a rough
interface, the main programme switches to tracking within the corresponding surface box. To
simplify the geometrical operations, the motion of particles within the box is referred to a right-
handed reference frame with the origin at one vertex of the box and the axes parallel to the
edges, so that the box lies in the first octant. The plane z = 0 is regarded as the base of the box,
and the surface is described by giving its altitude z(x, y) at the points of a regular Cartesian
grid with spacings Δx, Δy. The definition of the surface is provided by the user in an ASCII file
with three columns, which specify the coordinates xi (i = 1 : Nx) and yj (j = 1 : Ny) of each
grid point, and the surface altitude zi,j , respectively. It is assumed that the x coordinate varies
first in the file, that is, that the triad xi, yj , zi,j is given in the line number i+ (j − 1)Ny of the
file. Since

xi = (i− 1)Δx, yj = (j − 1)Δy, (1)

the arrays xi and yi do not need to be stored in memory. To avoid inconsistencies resulting from
numerical roundoff, our subroutines define a box of height Δz = 1.1S, where S is the difference
in altitudes of the highest and lowest point of the original surface, and the surface is shifted
so that the altitudes of the lowest and highest points are 0.05Δz and Δz − 0.05S, respectively.
That is, the shifted values zi,j are all such that 0.05S ≤ zi,j ≤ Δz− 0.05S. A continuous surface
is obtained by introducing a triangular mesh. The grid points of each cell (xi, xi+1)× (yj , yj+1)
define two possible pairs of triangles (see fig. 1). The surface generally looks smoother when
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using the pair that intersect along the diagonal of the cell that has the largest slope (case b in
fig. 1) and, consequently, this is the triangularisation scheme adopted in our algorithm. Thus,
each cell defines a column consisting of two sections, separated by the surface triangles. Note
that we are assuming that the volumes below and above the surface are filled with two different
materials.
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Figure 1. Possible triangularisations of a
cell (x1, x2) × (y1, y2), characterised by the
slopes of the diagonals of the cell.

In Monte Carlo simulations the trajectory of a particle is described as a sequence of connected
linear steps, or “jumps”, of length Δs determined by the physics subroutines. Each step
corresponds to a segment of a ray defined by the equation

r(s) = r(0) + sd̂. (2)

where the vectors r(0) = (x(0), y(0), z(0)) and d̂ = (u, v, w) are, respectively, the position and
the direction of motion at the start of the step. Steps represent free flights of the particle,
which end either with an interaction or when the particle arrives at an interface, i.e., a surface
separating two different materials.

A conventional Monte Carlo code generates random particle histories sequentially, by
sampling the length Δs of the steps, and the energy loss and the deflection angles caused
by the interactions. The probability distribution functions of these variables are determined by
the adopted interaction model (see, e.g., Ref. [9]). When a particle arrives at a mathematical
interface (a quadric, in the case of penelope/pengeom), the simulation code halts the particle
and resumes simulation in the material behind the interface.

In the case of rough interfaces, the Monte Carlo code can still follow particles up to a distance
� Δz from the mathematical surface and then switch the simulation to the surface box. The
tracking of particles through the box is performed by using the strategy and the formulas
presented in the Appendix.

2.1. Samples with a rough external surface
A situation of interest in EPMA is that of a sample with a rough external surface that
is bombarded by the electron beam. Because the probed volume has microscopic lateral
dimensions, the relevant portion of the sample surface can be described numerically. We
have written a dedicated programme, named epmar, which simulates EPMA measurements
on targets having the structure sketched in fig. 2, with the rough surface box placed on top of a
base sample. The latter is described by means of the pengeom subroutines, which allow defining
embedded particles, lamellae, etc. Notice that the plane z = 0 is assumed to separate the box
and the base sample. For simplicity, we also assume that the box and the base sample have
the same lateral extensions, i.e., that both are limited by the planes x = 0, x = Δx, y = 0 and
y = Δy. epmar was obtained by modifying the programme penepma [11] to include the option
of a rough external surface; the two codes operate similarly and generate the same information.
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Figure 2. Schematics of the simulation of an
EPMA measurement on a sample with a rough
surface. The programme epmar allows using
periodic boundary conditions in the x-y plane.

The simulation of particle histories within the box is performed by calling the penelope
subroutines and using the tracking strategy described in the Appendix. When a particle leaves
the box through one of the lateral faces, we make it re-enter the opposite face thus imposing
periodic boundary conditions in the x and y directions. Each particle is followed until it leaves
the box through the lower or the upper plane, or it is absorbed within the material. Because
secondary particles may occasionally be produced, they also have to be followed until they
leave the box or are absorbed. When the simulation of the shower in the box is completed, the
tracking of particles is resumed in the base sample using the pengeom subroutines. The process
is repeated each time a particle arrives to the rough interface.

In practical EPMA of e.g., geological samples with lamellae, the analysed volume may present
complicated structures, which approximately recur with a certain periodicity. The definition of
the geometry of these samples with pengeom is very laborious. To simplify the work, the
programme epmar offers the option of applying periodic boundary conditions in the x-y plane
also to the base sample. In addition, although pengeom uses mathematical surfaces to limit the
bodies in the base sample, the method described in Section 2.2 can be used to add roughness to
the “internal” surfaces.

2.2. Internal rough interfaces
To obtain a general tracking algorithm we also consider geometries with macroscopic rough
interfaces, which are each described by a box representing a finite sample portion of the rough
surface. As indicated above, we assume that the main programme tracks particles in the
conventional way, i.e., by using only mathematical surfaces, and surface roughness is taken into
account only when a particle gets close to the mathematical surface. For the sake of programming
simplicity, we let the main programme track a particle until it reaches the mathematical surface,
which is then replaced by the surface box. The box is placed “parallel” to the mathematical
surface in a position such that the particle crosses the rough surface with randomly selected x
and y coordinates (in the box frame). The simulation of the particle is then continued within
the box by using the tracking method described in the Appendix.

Let rs = (xs, ys, zs) and d̂s = (us, vs, ws) be the position and direction of motion of the particle
when it arrives at the mathematical surface. The latter is then replaced by the box oriented
so that its z axis is parallel or anti-parallel to the normal n̂ = (nx, ny, nz) to the mathematical
surface, making sure that the materials in the box are coincident with those in the pengeom
geometry (see fig. 3). Since the tracking of particles within the box is performed with reference
to the box frame, the position and direction vectors of the particle have to be transformed from
the laboratory frame (i.e., from the reference frame adopted in the main programme) to the box
frame. Consistently with the assumed “homogeneity” of the rough surface, the particle starts
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its motion in the box from a random position r = (x, y, z) where the coordinates x and y are
sampled uniformly and z is set equal to the altitude of the triangularised surface at (x, y) plus
or minus a small amount, ε � 10−8 cm, to ensure that the particle has just passed the surface.
The direction vector d̂ = (u, v, w) in the box frame is obtained by rotating the laboratory vector

d̂s,
d̂ = RB d̂s, (3)

where the rotation RB is required to transform the unit vector ẑ = (0, 0, 1) into the surface
normal vector n̂. We use the following

RB = R(φẑ)R(θŷ) (4)

where θ and φ are the polar and azimuthal angles of the normal vector n̂, and

R(φẑ) =

⎛
⎝

cosφ − sinφ 0
sinφ cosφ 0
0 0 1

⎞
⎠ and R(θŷ) =

⎛
⎝

cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

⎞
⎠ , (5)

are rotations of angles φ and θ around the z and y axes of the laboratory frame, respectively.
That is,

RB =

⎛
⎝

cosφ cos θ − sinφ cosφ sin θ
sinφ cos θ cosφ sinφ sin θ
− sin θ 0 cos θ

⎞
⎠ , (6)

with

cos θ = nx, sin θ =
√

n2
x + n2

y, cosφ =
nx√

n2
x + n2

y

, sinφ =
ny√

n2
x + n2

y

. (7)

When n2
x + n2

y � 1, so that nz � ±1, we have

RB =

⎛
⎝
−1 0 0
0 1 0
0 0 −1

⎞
⎠ (8)

if nz � −1 and RB = I, the identity matrix, if nz � +1.

The evolution of particle histories within the box is followed by calling the penelope
subroutines and using the tracking strategy described in the Appendix. When a particle leaves
the box through one of the lateral faces, we make it re-enter the opposite face thus imposing
periodic boundary conditions in the x and y directions. Each particle is followed until it
leaves the box through the lower or the upper plane, or it is absorbed in the material. The
handling of secondary particles is somewhat tricky, because they cannot be sent directly to the
secondary stack of penelope (see Ref. [9]), where all particles are referred to the laboratory
frame. Secondary particles generated within the box are followed until they leave the box or
are absorbed. Only when the simulation of the shower in the box is completed, the particles
that have left through the upper and lower faces of the box are transferred to the secondary
stack. Their position coordinates and directions of motion in the laboratory frame are obtained
by applying the inverse of the rotation, eq. (4), to the vectors r and d̂ in the box frame, followed
by a translation rs of the position vectors, r→ r+ rs.

After completing the simulation of the shower in the box, the main programme resumes
normal simulation through the pengeom geometry. The process is repeated each time a particle
arrives at a rough interface.
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Figure 3. Geometrical transformation from the laboratory frame to the box
frame of a rough “internal” surface. The particle reaches the mathematical
surface at rs moving in the direction d̂s. The simulation within the rough-
surface box starts with the particle at a random position just below the
triangularised surface and moving in the direction d̂ = RBd̂s, see eq. (3).

3. Validation and examples
To validate the present simulation scheme, as well as to reveal the effect of surface roughness,
we have performed simulations of EPMA measurements on Fe samples with a rough external
surface having a simple structure, namely a periodic array of square pyramids with 2 μm base
edges and lateral faces forming an angle α with the normal to the surface (fig. 4). This structure
can be described by the programme penepma, which uses the pengeom geometry subroutines,
and by the epmar code, which implements the present tracking algorithm for rough surfaces.
Notice that the adopted strategy for surface triangularisation (the triangles in each column share
the diagonal with the largest inclination of the surface) reproduces the surface geometry exactly.

A

B

C
α

2 μm

Figure 4. Geometry of the sample with a
periodic ”rough” surface used to verify the
numerical tracking algorithm.

Simulations of identical arrangements were performed with the codes penepma and epmar.
Line intensities were tallied by using a detector that counts X-rays emitted from the sample in
directions with polar and azimuthal angles in the intervals (35◦,55◦) and (0◦,90◦), respectively
[see Ref. [11] for details]. A pencil beam of 20 keV electrons (with null lateral extent) impinged
normally on the surface of the sample, at three different positions of a pyramid near the centre of
the structure (to minimise edge effects). The numerical results from the two codes are equivalent,
that is, their differences are less than, or of the order of their estimated statistical uncertainties.
With the considered sample geometry, epmar is slightly more efficient than penepma, and
hence the numerical effort devoted to tracking particles through the rough surface box does not
slow down the programme significantly.
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Results from simulations for samples with pyramids of two different heights, corresponding
to angles α of 30◦ and 60◦ are shown in table 1, together with results from the ideal target with
a smooth surface (α = 90◦). The latter case was also simulated with penepma assuming a flat
surface of the sample; the results agree with those of epmar to within statistical uncertainties.
The effect of the surface roughness on the measured intensities is usually manifest.

Table 1. Intensities (number of X-rays per unit solid angle and
per incident electron) of the indicated Fe X-ray lines for a 20 keV
electron beam at the various impact positions in the pyramid (as
indicated in fig. 4). The quoted relative uncertainties correspond
to a 3σ confidence interval.

Line α A B C

K-L2 30 4.14E-5±2.1E-7 4.89E-5±2.4E-7 5.21E-5±2.6E-7
K-L2 60 4.21E-5±2.1E-7 4.81E-5±2.4E-7 5.14E-5±2.6E-7
K-L2 90 4.92E-5±2.4E-7 4.92E-5±2.4E-7 4.92E-5±2.4E-7
K-L3 30 8.13E-5±2.9E-7 9.56E-5±3.4E-7 1.02E-4±4.0E-7
K-L3 60 8.23E-5±3.0E-7 9.42E-5±3.4E-7 1.01E-4±3.6E-7
K-L3 90 9.61E-5±3.4E-7 9.61E-5±3.4E-7 9.61E-5±3.4E-7

Simulations have also been performed for a Fe sample with a realistic rough surface, a small
portion of which is displayed in fig. 5. The sample was irradiated with a 20 keV electron
beam, impinging normally on the surface box, at the positions indicated in fig. 5. As in the
previous example, line intensities were tallied by considering a detector that counts X-rays
emitted in directions with polar and azimuthal angles in the intervals (35◦,55◦) and (0◦,90◦),
respectively. Simulations were performed with the programme epmar; each run involved a
number of simulated showers such that the statistical relative uncertainty of the Fe K-L2 line
intensity was less than 1 %. Figure 5 shows the surface profile along the line scanned by the
electron beam, and the calculated intensity (number of X-rays per unit solid angle and per
incident electron) of the Fe K-L2 line at the various beam positions.

These examples indicate that line intensities from EPMA measurements in bulk samples with
a rough surface tend to be larger at the valleys of the surface and smaller at the peaks.

4. Concluding remarks
The tracking algorithm described in this communication provides a practical solution to account
for surface roughness in conventional Monte Carlo transport codes using geometries defined by
mathematical surfaces. In our implementation, much care has been exercised to protect the
programme against numerical round-off errors. The use of a “movable” surface box allows
describing the topography of rough surfaces on the scale of the nanometre.

The programme epmar performs Monte Carlo simulations of EPMA measurements on
samples with rough surfaces. It not only accounts for the roughness of the irradiated surface
of the sample, but also and permits considering “internal” rough surfaces to define material
structures (inclusions or lamellae) within the base sample. The programme has been validated
by comparison with results from penepma in the case artificial surfaces with periodic roughness.
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Figure 5. Top: A portion of the rough
surface used in the epmar simulations,
with all lengths in micrometres; the
arrows indicate the positions of the
electron beam. Bottom: Line scan of
the surface (solid black line, left axis)
and values of the simulated Fe K-L2
line intensities (circles with error bars,
right axis) at the various positions of the
beam. The quoted relative uncertainties
correspond to a 3σ confidence interval.
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Appendix. Tracking particles in the surface box
As indicated above, to describe the motion of particles within a surface box we use a reference
frame with the origin at the box corner and axes parallel to the box sides. The tracking is
simplified by considering the box as the set of elementary volumes defined by the “vertical”
planes x = xi, y = yj that pass through the grid points, eq. (1), and the triangularised surface.
Thus, each cell (xi, xi+1)× (yj , yj+1) determines a column volume with two sections of materials
M1 and M2 separated by two surface triangles.

Given the initial position r(0) and direction of motion d̂ of a particle, the indices of the
column that contains the particle are

i = [1 + x(0)/Δx] and j = [1 + y(0)/Δx], (A.1)

where [x] denotes the integer part of x. The altitudes of the surface at the four vertices of
the cell determine the two surface triangles (which share the diagonal of the cell corresponding
to the largest slope). The material where the particle moves or, equivalently, the position
of the particle relative to the surface (below or above), is determined by the altitude of the
triangularised surface at the point x(0), y(0), which can be readily calculated by simple linear
interpolation of the three vertices of the corresponding triangle.

When the particle tries to jump a distance Δs, decided by the physics subroutines, we must
determine whether the flight ends within the current material, the particle changes material
by crossing the surface, or it leaves the box. To determine the actual move we consider the
intersections of the ray r(0) + sd̂ with the column planes, the two triangles, and the upper and
lower sides of the box; evidently, only the intersections that occur ahead of the particle (i.e.,
at positive s) are relevant. When the first crossing is with one of the vertical planes, we move
the particle to the corresponding column and repeat the process. If the first intersection is with
one of the triangles, the particle is halted at the surface and the simulation is resumed in the
new material. If the particle leaves the box, control is returned to the steering main program
to continue tracking any secondary particles generated within the box, or to proceed with the
simulation of particles outside the box. Evidently, the operation that is more laborious is the
calculation of intersections with triangles, which is performed as follows.

A triangle is defined by the coordinates of its three vertexes, V(0), V(1), and V(2). The points
R of the plane of the triangle are conveniently represented by using the so-called barycentric
coordinates (η, μ) defined by

R = V(0) + η
(
V(1) −V(0)

)
+ μ

(
V(2) −V(0)

)
. (A.2)

Notice that the point R is inside the triangle only when η ≥ 0, μ ≥ 0, and η + μ ≤ 1. The
intersection of the ray and the plane of the triangle is determined by the vector equation

r(0) + sd̂ = V(0) + η
(
V(1) −V(0)

)
+ μ

(
V(2) −V(0)

)
. (A.3)

Rearranging terms we have

− sd̂+ η
(
V(1) −V(0)

)
+ μ

(
V(2) −V(0)

)
= r(0)−V(0) (A.4)
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or, in matrix form,

⎛
⎜⎜⎜⎝

−u V
(1)
x − V

(0)
x V

(2)
x − V

(0)
x

−v V
(1)
y − V

(0)
y V

(2)
y − V

(0)
y

−w V
(1)
z − V

(0)
z V

(2)
z − V

(0)
z

⎞
⎟⎟⎟⎠

⎛
⎜⎝

s

η

μ

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

x(0)− V
(0)
x

y(0)− V
(0)
y

z(0)− V
(0)
z

⎞
⎟⎟⎟⎠ . (A.5)

The solution can be obtained by using Cramer’s rule. It is worth noting that the determinant
of the system,

D ≡

∣∣∣∣∣∣∣∣∣

−u V
(1)
x − V

(0)
x V

(2)
x − V

(0)
x

−v V
(1)
y − V

(0)
y V

(2)
y − V

(0)
y

−w V
(1)
z − V

(0)
z V

(2)
z − V

(0)
z

∣∣∣∣∣∣∣∣∣

= −d̂·
[(

V(1) −V(0)
)
×
(
V(2) −V(0)

)]
, (A.6)

represents the volume of the parallelepiped formed by the sides of the triangle and the direction
of motion of the particle. The vector

N =
(
V(1) −V(0)

)
×
(
V(2) −V(0)

)

is perpendicular to the triangle. Evidently, the system of equations eq. (A.5) has a solution

only when D �= 0 or, equivalently, when the direction d̂ of the ray is not parallel to the triangle
(d̂·N �= 0).

To avoid unnecessary calculations, it is convenient to calculate first the distance s to the
plane of the triangle, which is given by

s =
1

D

∣∣∣∣∣∣∣∣∣

x(0)− V
(0)
x V

(1)
x − V

(0)
x V

(2)
x − V

(0)
x

y(0)− V
(0)
y V

(1)
y − V

(0)
y V

(2)
y − V

(0)
y

z(0)− V
(0)
z V

(1)
z − V

(0)
z V

(2)
z − V

(0)
z

∣∣∣∣∣∣∣∣∣
=

1

D

(
r(0)−V(0)

)
·N. (A.7)

The particle may cross the triangle only when s is positive and less than the step length Δs.


