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Abstract. The authors have developed the simultaneous measurement scheme for texture and 

phase fraction by using the Time-Of-Flight (TOF) neutron diffractometer, iMATERIA at J-

PARC MLF, Japan. The Rietveld texture analysis (RTA) was applied for the data analysis 

method, which has been developed mainly at HIPPO diffractometer at LANSCE, USA. Because 

of the differences of measurement scheme and machine specifications, the analysis for the data 

from iMATERIA requires some special treatments. In this paper, we provide instructional 

information for the measurement at iMATERIA and subsequent RTA to determine the textures 

and phase fraction in metallic materials. The instrumental features and measurement procedures 

are firstly introduced. Second, some unique data treatments, especially about the technique called 

“scale factor bounding” is explained, including how to set it. We also suggest some refinement 

strategies especially aiming to have accurate phase fraction determination. 

1.  Introduction 

The textures and phase fractions in metallic materials are key features of the microstructure to control 

the performances. As discussed in many papers, consideration of texture is necessary to determine phase 

fractions accurately by diffraction techniques [1-3]. As reported in the previous papers, the authors have 

developed the measurement scheme of texture and phase fraction in steels by using time-of-flight (TOF) 

type neutron diffractometer, iMATERIA at J-PARC MLF, Japan [4-7]. By acquiring multiple 

diffractograms (TOF-intensity relationships) corresponding to various sample directions, Rietveld 

texture analysis (RTA) can simultaneously refine ODF, i.e., texture, and various phase parameters 

including the volume fraction of each phase. 

The RTA based on TOF neutron diffraction data was firstly proposed by Wenk et al. [8] and 

extensively utilized at HIPPO diffractometer at LANSCE, USA [9,10]. The data importing, and 

subsequent RTA can be conducted by using MAUD software, which has been developed by Lutterotti 

[11,12].  

http://creativecommons.org/licenses/by/3.0
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Although the Rietveld analysis is a computational approach, it does not “automatically” give users 

an appropriate result in all cases. Users should understand the procedures, have a strategy of refinement, 

and carefully review the result [13].  

There are many practical instructions and examples for analysis using MAUD based on data 

measured at HIPPO [9,10]. Also in case of iMATERIA, most of those can be applied in the same manner. 

However, users may need some specific features and strategies for the data measured by iMATERIA 

because of the characteristics of instrument and measurement scheme. Additionally, the techniques at 

iMATERIA focus on the application for metallic materials used in industry while most of instructive 

literatures for HIPPO showed examples of minerals. The authors’ previous papers somewhat focused 

on the verifications of the measurement and analysis but limited information was provided about the 

detailed procedures. In this paper, therefore, we introduce some features of iMATERIA and practical 

procedures of RTA by using MAUD to determine textures and phase fractions in metallic materials. 

2.  Instrumental features 

2.1.  Fundamental specifications of iMATERIA 

iMATERIA locates at 20th beamline at J-PARC MLF, Japan. It accepts the pulse neutron beam from the 

poisoned moderator [6,7], resulting in an ideal balance between intensity and resolution. Numerous 

detectors are equipped around the incident beam axis as shown in figure 1, which enables the 

simultaneous detection at various 2θ. The names of “Banks”, groups of the detectors, in figure 1 indicate 

approximate 2θ angles in degree. Although iMATERIA has more detectors below 2θ = 30° and small 

angle neutron scattering (SANS) bank, they are not used in the current purpose. The detectors consist of 

the arrays of position-sensitive tube detectors (1D-PSDs). Hence, it is possible to set arbitrary positions 

and areas on the detectors as the independent 0D detectors. We call them “observation points” (OPs). 

As shown in figure 1, we set 132 OPs (small rectangles). Each OP acquires a diffractogram 

corresponding to different scattering vector direction. Further details e.g. the geometrical distribution of 

OPs, can be found in the previous papers [4].  

 

 

Figure 1. Schematic drawing of iMATERIA. 

 

2.2. Sample Setting 

Currently, 4 types of sample holders shown in figure 2 are available for the measurement in ambient 

environment. The sheet holder (figure 2 (a)) is mainly used for the samples from the industry. The 

standard length and width of the sample are 65 mm and 8 mm, respectively. There should be a hole for 

a screw pin. The diameter of the hole is 2.5 mm and the center of the hole is 5 mm away from the top 

end. It can hold the sample thickness up to 6 mm. Thin sheets are usually laminated so that the total 

thickness becomes 6 mm.  

The cylindrical vanadium cells (figure 2 (b) and (c)) are used for smaller test pieces. Since the 

coherent scattering length of vanadium is very small, the diffraction from the cell is negligibly weak 

[14]. Therefore, vanadium is frequently used as the “transparent” material for various neutron diffraction 
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experiments. In order to fix a small sample inside the cell, polyimide films are attached both on top and 

bottom of the sample as shown in figure 2 (e). These prevent the sample tilt or rotate during the transfer 

to the measurement position.  

For the samples which cannot be inserted into the cells, the cramp holder shown in figure 2 (d) is 

applied. In the photograph, a quartz single crystal (approximately 15 mm×10 mm×10 mm) is put 

between the cut pieces of vanadium cells. Because of the side pillars (white bars in the photograph), 

available sample angle (ω in figure 1) is limited. However, the pillars do not shut the paths of neutron 

beams at all when ω is set at around 30°. Use of glue to hang the sample is discouraged at iMATERIA 

because it is often embrittled in vacuum and the sample falls from the height of around 1.5 m to the 

bottom of sample chamber. 

All the sample holders are attached to the white plastic (polyoxymethylene) caps seen in figure 2 (a 

~ c), which are held by the sample changer [15].  The cap has a radio-frequency identification (RFID) 

chip which records an individual sample ID number for the measurement/storage management. The 

sample changer can introduce ω rotation and vertical movement along YD. Therefore, the beam spot 

position can be adjusted by moving the sample if necessary. The beam spot size is also adjustable by 

changing the size of the incident beam slit. The squares shown in figure 2 indicate the typical spot sizes 

(20 mm × 20 mm or 15 mm × 15 mm) and positions. 

 

 

Figure 2. Sample holders used at iMATERIA. (a) sheet sample (65 mm × 8 mm) holder, (b) 8 mm 

(inner diameter) cylindrical cell made of vanadium,8 mm vanadium cell, (d) cramp holder for 

irregular shape, and (e) schematic for the sample fixing in the vanadium cell. 

 

2.3. Neutron diffraction measurement 

The neutron pulse at J-PARC MLF is generated from the proton beam with the frequency of 25 Hz. For 

most of the metallic crystals, iMATERIA accepts every pulse (single frame mode). This results in the 

maximum d of approximately 0.25 nm for the backscattering banks (Banks 161 and 149 in figure 1), 

0.35 nm for the side banks (Banks 99-81) and 0.9 nm for the low angle banks (Banks 39 and 31). By 

limiting the accepting frequency to 12.5 Hz (double frame mode), the maximum d becomes double but 

the scattering intensity per unit time becomes half. The double frame mode is advantageous for materials 

having large unit cells, e.g., natural rocks and intermetallics [6].  

The time for the measurement depends on the coherent scattering cross section, σc of the elements, 

the sample volume, and the proton beam power at J-PARC. In case of a steel sample held by the sheet 

holder, satisfactory data could be acquired in 5 minutes with the single frame mode when the proton 

beam power was 150 kW. The beam power is currently increasing, and it will reach to 1 MW in close 

future. It is confirmed that the incident neutron flux proportionally increases with the proton beam power. 

Therefore, the measurement time will become much shorter in future.  
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3.  Analysis 

3.1.  Data format and importing 

Since MAUD accepts the input data described in the format of GSAS, another Rietveld solver, details 

of the data format can be found in the GSAS manual [16]. Although there are several types of the input 

data formats, we use the “ESD” format and give the extension “gda”. In the following, this type of data 

file is called a “GDA file”. The other files are also referred by capitalized extensions. The appearance 

of a GDA file in the text editor is shown in figure 3. In this format, the intensity and its expected standard 

deviation are alternatively described with a constant binning width of TOF (usually 8 μs is applied for 

cubic and HCP metals). It should be noted that the values of intensity and standard deviation recorded 

in this file are not “raw” measured data but results of external normalization by the incident beam 

intensity [14]. Although MAUD/GSAS can deal with the incident spectrum as a continuous function, 

the incident spectrum profile at iMATERIA is too complex to be represented by the prepared functions. 

The GDA file includes the 132 datasets (diffractograms) corresponding to the OPs. The sequential 

numbers are distributed as BANK 1, BANK 2, …, BANK 132. It should be noted that the terminology, 

“BANK” used here actually corresponds to the OP, a part of the detector.  In this paper, we use “Bank” 

for the group of OPs having similar 2θ, as indicated in figure 1. 

There is also a file describing the instrumental parameters of the 132 OPs (*.PRM). This file 

describes the positions of the OPs and instrumental profile functions describing the standard shapes of 

diffraction peaks. In addition, the conversion parameters, DIFC, DIFA, ZERO are also recorded. These 

parameters are used to convert TOF to d spacing in angstrom. These instrumental parameters are 

basically dealt as the constant (fixed) values in the following analysis. Therefore, regardless of the 

sample, the same PRM file can always be used. Strictly speaking, DIFC is often the value to be refined 

in multi-diffractogram analysis because this can be affected by the sample shape, kind of element and 

sample density [9]. However, the refinement of DIFC is usually very fine tuning, which makes the 

variation less than 1 percent of the value. 

The “HIPPO wizard” can be used to import the GDA and PRM files (even though the instrument is 

not HIPPO but iMATERIA!). The sample setting angle ω is also asked in the dialog. After the data 

import, the whole parameters can be saved as the analysis file (*.PAR file). Subsequently, phase initial 

parameters are prepared. Since the crystal structures of metals are very simple, it may be possible to set 

them manually. However, it is easier to import CIF or MDB file. The former is written in the universal 

format [17] to describe the crystal structure of a certain phase. The latter is a set of CIF files. You may 

find “structures.mdb” in the MAUD directory and chose what you need to include from numerous phase 

data. The MDB files can be created by simply copy and paste the multiple CIF data into a single file. It 

is convenient to have one’s own MDB library including only the phase data which you frequently refer 

to.  

 

 

Figure 3 the input files to start the Rietveld texture analysis using MAUD. 
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3.2.  Characteristic settings for iMATERIA 

3.2.1. Bank grouping Tolerance. In order to have the Bank groups shown in figure 1, firstly, the tolerance 

angle of 2θ for the Bank grouping must be changed to 6°. By selecting “Analysis > Preferences” at the 

top menu bar, a table of values become visible. In this list, you can find 

“hippoWizard.maxDelta2ThetaForBankGrouping” and set the value as “6”. Then click “save on disk”, 

and “OK” to close the table, and restart MAUD. This is not mandatory, but the appropriate bank 

grouping makes the comparison between measured and computed diffractograms easier, especially in 

the 2D plotting. This should be done before starting “HIPPO wizard” and creating the PAR file. 

 

3.2.2. Scale factor bounding. After creating the PAR file (either before or after importing phase 

information), we introduce the “scale factor bounding”, which forces the scale factors belonging to the 

same Bank group to have the same value. The scale factor is the value to adjust the overall height of the 

computed diffractogram. This is basically a meaningless value but one of the most important values to 

have a good agreement between the computed and measured diffractograms.  

When the authors developed the texture measurement scheme with only one neutron exposure, we 

encountered the problem that the scale factors belonging to the same Bank group varied in a certain 

range, resulting in inferior fitting. On the other hand, the scale factors in the same Bank group converged 

into an almost identical value for non-textured powder materials and a good fitting quality was obtained. 

The latter seemed to be more appropriate because the intensity normalization described above should 

compensate the differences of detecting efficiencies among the OPs. Therefore, we introduced the scale 

factor bounding, which improved the result and stability of the analysis for textured materials. 

The scale factor variation that we observed was probably because that one OP measures only one 

diffractogram at iMATERIA. When we use 3~5 GDA files measured at different ω angles (as HIPPO 

does), the variation of the scale factors was suppressed. Since one OP measures multiple diffractograms 

for different sample directions in this case, the scale factor for this OP should be chosen to fit all the 

diffractogram. In other words, the effect of texture on the scale factor is somewhat cancelled or averaged. 

On the other hand, when one OP measures just one diffractogram, there arises the ambiguity; which 

should be applied to explain the diffractogram having large peaks, high pole densities or large scale 

factor? 

When the scale factor bounding is introduced, a unique scale factor is determined by considering all 

the diffractograms belonging to the Bank group. As the complementary effect, this increases the 

calculation speed due to the reduction of parameters to be refined. 

The scale factor bounding can be introduced by changing the refinement status of the scale factors. 

One of them in a certain Bank group needs to be “refined” but the others are set “equal to” the refined 

one. Since there are 132 scale factors and 7 Bank groups, 125 statuses of scale factors should be changed. 

Because it is very time-consuming to do this procedure manually on MAUD GUI, we developed a 

simple software to modify the PAR file so that the above procedure is conducted in a moment.  

 

 

Figure 4. Screenshot of the “PAR Maker”, which applies the scale factor bounding and/or makes a clone 

PAR file. 
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The screenshot of this software is shown in figure 4. This software can also be used to create a “clone” 

PAR file, which has the same parameters as the base but GDA file data is replaced. When the 

replacement of measured data is not needed, a user chooses the PAR file made by HIPPO wizard, specify 

the GDA file which was chosen in the wizard, and check the “Add scale factor bounding”. Finally, by 

clicking “Make”, the new PAR file with the scale factor bounding is created. The file name can be 

specified by the save-file dialog. The textbox of “Target file” shows the full-path name of the new PAR 

file after the job is completed. 

By specifying different GDA file from that included in the base PAR file, the data is replaced by the 

new GDA file, i.e., another measurement. This is useful to analyse the series of samples having similar 

conditions. It is unnecessary to repeat HIPPO wizard and set phases for every sample if a user uses this 

software. However, one should pay attention that this process may introduce a certain bias on the 

analysis. We recommend resetting ODF for every phase in the clone PAR file at the start of refinement. 

Based on our experience, the ODF calculation converges faster by stating from a random ODF than a 

certain “wrong” texture.  

3.3.  Refinement 

3.3.1. General settings. Before starting the refinement, several settings are required. The detailed 

procedures can be found elsewhere [9]. In this paper, we simply introduce what we apply. We 

recommend using MAUD version 2.7.1 or higher. 

As the ODF calculation method, E-WIMV method [11] is applied. The ODF resolution of 5° works 

the best for most of structural metallic materials. The default sample coordinate is fixed at the 

diffractometer coordinate, XD-YD-ZD, in MAUD. Therefore, artificial rotation of the sample is necessary 

so that XD, YD, and ZD respectively correspond to the RD, TD, and ND in case of the rolled sheet. figure 

5 shows the values of rotation angles for the rolled sheet with three typical setting geometries.  

 

 

Figure 5. Sample rotations to fit the RD-TD-ND coordinate to the diffractometer coordinate,  

 

3.3.2. Automatic refinement wizard. In the Rietveld analysis, a user can “refine” (deal as variables) 

almost all the parameters at the same time. However, having too many variables at the beginning quite 

often results in divergence, i.e. the calculated fitting curve goes far away from the measured 

diffractogram. Therefore, one needs to have a “strategy of refinement”; what should be fixed or to be 

refined at first, and what to do after that? The automatic refinement wizard provides some sets of the 

refinement strategies. In case of textured metallic materials, one can use “Texture analysis” in the wizard. 

This automated refinement process automatically conducts the refinements in the following four steps.  

 

i. background (BG) and scale factor (SF). 

ii. lattice parameter (only a for cubic phases), DIFC, Debye-Waller factors (Biso) + BG and SF. 

iii. Microstrain (ε) and crystallite size (D) + BG, SF, a, DIFC, Biso. 

iv. Mutual refinement of ODF and Rietveld parameters: ε, D, a, DIFC, Biso, BG, SF. 
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At each step, several cycles of iterative calculation are conducted. We recommend conducting 4 cycles. 

Applying too few cycles may result in divergence.  

If the main purpose of the analysis is the texture analysis of a single-phase steel, a satisfactory result 

can be achieved only by doing this. However, in some cases, additional iteration with more parameters 

are necessary as described below. 

 

3.3.3. Individual refinement of Debye-Waller factor for each phase. The Debye-Waller factor, Biso, also 

called the temperature factor, represents the effect of the thermal vibration of the atoms on the 

diffractogram. This introduces the gradual decrease of the diffraction intensities with decreasing d (or 

increasing Q, technically) [18]. By conducting the above automatic refinement, the Debye-Waller 

factors, Biso for all the phases are bound in to one value. This is a good assumption at the initial stage 

not to reach divergence. However, For the accurate determination of the phase fraction, Biso for each 

phase should be separately refined. The separate refinement can simply be done by changing the 

refinement status from “equal to” to “refine”, and a few cycles of refinement. With decreasing Biso, the 

overall diffraction intensity increases. Therefore, underestimation of Biso causes the underestimation of 

the phase fraction.  

Table 1 shows examples of analyses with separated and bounded Biso refinement for the laminated 

steel sample used in the previous study [4]. The FCC (austenite) phase tends to have larger Biso than 

that of BCC (ferrite) phase. When Biso for both phases are bounded into one value, the phase fraction of 

austenite is underestimated, as expected above. Peng et al. reported that Biso for BCC and FCC iron at 

293 K were 0.3250 and 0.5577, respectively [18].  Although the values for alloy steels can be different, 

it is always important to check if the value of Biso is around these values. Sometimes, a negative value 

or extremely large value (>1) is obtained. In such case, some other parameters (most likely texture) are 

wrongly determined, or an absorption model should be considered. 

To take the absorption into account, “Harmonic Coeff.” sample shape model works very well. The 

sample symmetry should be “2/mmm” for rectangular samples. “Cylinder” symmetry is also used for 

cylindrical bars and wires. Since both the absorption and thermal vibration bring gradual change of 

scattering intensity depending on d, they seem to affect each other in the refinement. Based on our 

experiences, the steels containing Mn or Co often require the consideration of absorption while there 

seems to be negligible absorption for low carbon steels and Si steels.   

When the fraction of the secondary phase is a few percent or smaller, the refinement of Biso tends to 

be very unstable. In such case, it is better to have a fixed value, according to the table provided by Peng 

et al., rather than applying an unreliable refined value. 

 

Table 1. Refinement conditions and resulted values of Debye-Waller factors and Austenite fractions 

in the laminated SUS430-SUS316L composite sample. The prepared fraction of austenite was 19.4 

vol%. 

Biso refinement Separate Bounded 

Biso (ferrite) 0.27 0.25 

Biso (austenite) 0.48 0.25 

Austenite fraction (vol %) 19.1 17.4 

 

3.3.4. Chemical composition. In most multiphase materials, each phase has a different chemical 

composition even if it is a solid solution. As the neutron scattering intensity depends on the elements, 

the chemical compositions should be considered for the accurate phase fraction determination. In the 

previous paper [4], we have reported a verification using composite samples consisting of SUS 316L 

austenitic stainless steel (Fe-18Cr-12Ni-1Mo, mol %) and SUS430 ferritic stainless steel (Fe-18Cr). At 

the beginning of the study, we obtained smaller analysed fractions of austenite than the prepared 

fractions in all the samples because both FCC and BCC phases were set as “pure Fe”. Since SUS 316L 

contains a certain amount of Ni, the average scattering length was larger than that of SUS 430. By setting 
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alloy elements (as the atoms partially occupies the Fe site), we have reached the satisfactory results 

reported in that paper. If possible, one should estimate the chemical compositions of the phases by the 

thermodynamic calculation or measure them by EDS, which is beneficial to obtain more accurate phase 

fraction. Especially the effect of chemical composition would be more critical when the sample contains 

high amount of Ti and/or V. Since they have negative values of coherent scattering lengths, the average 

scattering length can largely change by adding them. 

4.  Summary 

The simultaneous measurement system for texture and phase fraction was developed at the TOF neutron 

diffractometer, iMATERIA at J-PARC MLF, Japan. Most of technical backgrounds and procedures of 

measurement/analysis at iMATERIA are common with the pioneer, HIPPO at LANSCE, USA. 

However, some specific considerations and procedures are required due to the machine specification 

and characteristics of the measurement. Especially, the scale factor bounding, and separate Debye-

Waller factor refinement are keys to obtain accurate textures and phase fractions. In some cases, 

consideration of the absorption relating to the sample shape and/or chemical composition must be 

carefully considered, which depends the elements consisting the materials.  
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