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Abstract.

 

A

 

three degree of freedom model of spiral groove liquid lubricated

 

seal was 

established for studying the effects

 

of centrifugal inertia on dynamic characteristics. The 

dynamic stiffness and

 

damping coefficients of liquid lubricated

 

seal with centrifugal inertia and 

those without centrifugal inertia were obtained by means of finite element method, and then 

comparative analysis was carried out. Results indicate that dynamic stiffness and

 

damping 

coefficients are increased linearly with the increase of rotating speed.

 

Dynamic stiffness and

 

damping coefficients decrease

 

with the increasing

 

film thickness. The effects

 

of centrifugal 

inertia on axial stiffness coefficient and angular coupling stiffness coefficient can be neglected

 

under different rotating speed and different film thickness. When the values of rotating speed 

and film thickness are large, the effect of centrifugal inertia on angle stiffness coefficient 

cannot be ignored. Centrifugal inertia has no effects on dynamic damping coefficients with the 

variation of rotating speed and film thickness.

 

1. Introduction 

The spiral groove liquid lubricated mechanical seal has been widely applied in the field of rotary 

machinery, such as pumps, compressors, mixers and so on. Its configuration is shown in figure 1. 

Compared with a conventional mechanical seal, the surface of rotating ring contains a pattern of 

shallow spiral grooves, which generate the hydrodynamic pressure to separate the sealing rings [1]. 

With the increasing rotating speed, a great deal of work has been done on centrifugal inertia. However, 

most of the work has dealt with bearings [2-3]. The Reynolds equation incorporating centrifugal forces 

was derived by Pinkus and Lund [4], and then an analysis was conducted and solutions were provided 

for the effect of centrifugal forces on the hydrodynamics of high-speed thrust bearings and seals. Gupta 

and Sharma presented the analysis of centrifugal inertia effects in fluid-film-lubricated misaligned 

radial face seals [5]. Nowadays, most researchers have neglected the centrifugal inertia but Zhao did 

some work on spiral-groove rotary seal ring with considering the effect of centrifugation [6-7]. The 

ability to eliminate or minimize direct face contact during runtime is the key to the success of a liquid 

lubricated face seal. If the stator cannot track the rotor properly, seal face contact may occur, which 

would lead to face wear or seal failure [8]. Thus, it is important to study the effect of centrifugal inertia 

on dynamic characteristics of liquid lubricated seals.  

In this paper, a three degree of freedom model of spiral groove liquid lubricated seal is established. The 

stiffness and damping coefficients of liquid lubricated seal with centrifugal inertia and those without 

centrifugal inertia are obtained by the perturbation method and the finite element method. Then 

comparative analysis is carried out. The results can provide theoretical guidance for the design and 

application of liquid lubricated seal under different operating conditions. 

E-mail: yangwen516@126.com

http://creativecommons.org/licenses/by/3.0


2

1234567890‘’“”

ICMENS IOP Publishing

IOP Conf. Series: Materials Science and Engineering 378 (2018) 012017 doi:10.1088/1757-899X/378/1/012017

 

 

 

 

 

 

 

Figure 1. Geometry schematic diagram of rotating ring. 

The following analysis is based on the parameters listed in table 1, which includes seal geometry and 

operating conditions. 

Table 1. Parameters for the analysis of a spiral groove liquid lubricated seal 

Parameters Working conditions 

inner radius ri(m) 0.04425 

outer radius ro(m) 0.05325 

spiral groove radius rg(m) 0.05055 

spiral groove depth hg(m) 12.5×10
-6

 

spiral groove angle α(°) 18 

spiral groove number Ng 12 

land-to-groove ratio 1 

lubricant velocity μ(Pa·s) 0.001003 

lubricant temperature (℃) 25 

lubricant density ρ(kg·m
-3

) 1000 

inner pressure pi(MPa) 0.6 

outer pressure pw(MPa) 0.4 

2. Governing equations 

To establish the mathematical model, some basic assumptions are made as following. 

 The fluid between the sealing faces can be characterized as Newtonian fluid, and it is 

isothermal and isoviscous. Also, the fluid film is laminar. 

 The seal face is smooth and no face contact happens in the operation. 

The Reynolds equation considering centrifugal inertia can be expressed in the dimension form as 

follows [9]: 

     2 2 33 3 21 3
6 12

10

r hh hr h p h p
r r

r r r t r

   


     

           
         

               

                           (1) 

When the seal is perturbed by a small oscillatory motion (Δz, Δγx, Δγy) with frequency f, according to 

the kinematics shown in figure 2, the seal displacement can be expressed as the following: 

0 x ysin cosh h z r r                                                                  (2) 

where
ie ftz z   , 

i
x x e ft    , 

i
y y e ft    . h0 is the steady-state equilibrium film thickness. 



3

1234567890‘’“”

ICMENS IOP Publishing

IOP Conf. Series: Materials Science and Engineering 378 (2018) 012017 doi:10.1088/1757-899X/378/1/012017

 

 

 

 

 

 

These small motions cause a small pressure perturbation about the equilibrium pressure p0, and then the 

total pressure can be expressed as 

0 z x x y yp p p z p p                                                                   (3) 

Because the motions are defined in complex form, the corresponding perturbation pressures are also 

complexes, which can be written as 

z zr ziip p p  , x xr xiip p p  , y yr yiip p p                                                (4) 

 

Figure 2. Seal perturbation model andcoordinate system. 

Substituting relationships from equation (2) to equation (4) into equation (1) and neglecting higher 

order terms yields the following seven dimensionless equations: 

 2 3

3 3
1 22

1 R HP P H
RH H K K

R R R R RR   

       
                

                                          (5) 

 2 2

zr zr3 2 3 2
22 2

31 1
3 3

R HP P P P
RH RH H H K

R R R R R R R RR R   

              
                                

          (6a) 

zi zi3 3
1 12

1
2

P P
RH H K

R R R R


 

      
             

                                            (6b) 

   

xr xr3 2 2 3 2

2 2

2 3
1 2

1 1
3 sin 3 sin

sin
3 sin

P P P P
RH H R H H R

R R R R R R R R

R
K K H R

R R

 
   






              
                              

 
 

 

               (7a) 

xi xi3 3
1 12

1
2 sin

P P
RH H K R

R R R R
 

 

      
             

                                     (7b) 
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   

3
yr yr3 2 2 2

2 3
1 2

1 1
3 cos 3 cos

cos
3 cos

P P H P P
RH H R H

R R R R R R R R R

R
K K H R

R R

 
   






             
                             

 
  

 

                (8a) 

yi yi3 3
1 12

1
2 cos

P P
RH H K R

R R R R
 

 

      
              

                                     (8b) 

where
o

r
R

r
 , 

0

w

p
P

p
 , 

0

i

h
H

h
 , 1

f



 , 

zr i
zr

w

p h
P

p
 , 

zi i
zi

w

p h
P

p
 , 

xr i
xr

w o

p h
P

p r
 , 

xi i
xi

w o

p h
P

p r
 , 

yr i
yr

w o

p h
P

p r
 , 

yi i
yi

w o

p h
P

p r
 , 

2
o

1 2
w i

6 r
K

p h


 , 

2 2
o

2
w

3

10

r
K

p


 . ω is the rotating speed. hi is the film thickness. When K2 equals 0, 

equations from equation (5) to equation (8b) are the steady and dynamic Reynolds equations without 

considering centrifugal inertia. 

The following boundary conditions are used to solve the equations. 

i i wP P p p   at i i o=R R r r , 

w 1P P   at o 1R R  , 

( , ) ( 2 , )P R P R    , 

zr zi xr xi yr yi= = = = = 0P P P P P P   at i oR r r  and 1R  . 

Equation (5) is a linear equation that governs the steady-state pressure distribution at the equilibrium 

position. The solution is obtained by a Galerkin finite element method, and then it is used as the input to 

solve the remaining equations.  

The perturbation pressure Δp is viewed as a function of perturbation displacement and perturbation 

velocity of the static ring. Using a first order Taylor series expansion, the perturbation pressure can be 

expressed as 

zz xx x yy y z x x y yp p z p p p z p p                                                     (9) 

The axial force and angular moments in response to the perturbation pressure can be expressed in the 

following form 

 

     

z

x zz xx x yy y z x x y y

y

i i i
zz z xx x x yy y y

d 1 1

d sin sin

cos cosd

1

sin i e i e i e d

cos

A A

ft ft ft

A

F

M r pdA r p z p p p z p p dA

r rM

r p fp z p fp p fp A

r

     

 

  



     
     

                  
          

 
            
  

 



zz xx yy z x y

zz xx yy x z x y x

y yzz xx yy z x y

sin sin sin d sin sin sin d

cos cos cos cos cos cos
A A

p p p p p pz z

r p r p r p A r p r p r p A

r p r p r p r p r p r p

       

      

       
      

          
                     

 

   (10) 

Compared with equation (4), the real parts and imaginary parts of perturbation pressures can be 

expressed as  

zr zzp p , zi zp fp , xr xxp p , xi xp fp ,  

yr yyp p , yi yp fp . 
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Introducing the following form 

zz zx zy zz zx zyz

x xz xx xy x xz xx xy x

y y yyz yx yy yz yx yy

d

d

d

k k k c c cF z z

M k k k c c c

M k k k c c c

 

 

         
        

              
                    

                                   (11) 

Comparing equation (10) with equation (11), the dimensionless stiffness and damping coefficients are 

easily identified  

zr xr yrzz zx zy

zr xr yrxz xx xy

zr xr yryz yx yy

sin sin sin d

cos cos cos
A

P P PK K K

K K K R P R P R P A

K K K R P R P R P

  

  

  
  

    
  
       

                             (12) 

zi xi yizz zx zy

zi xi yixz xx xy
1

zi xi yiyz yx yy

1
sin sin sin d

cos cos cos
A

P P PC C C

C C C R P R P R P A

C C C R P R P R P

  


  

  
  

    
  
       

                          (13) 

where
zz i

zz 2
w o

k h
K

p r
 , 

zx i
zx 3

w o

k h
K

p r
 , 

zy i
zy 3

w o

k h
K

p r
 , 

xz i
xz 3

w o

k h
K

p r
 , 

xx i
xx 4

w o

k h
K

p r
 , 

xy i
xy 4

w o

k h
K

p r
 , 

yz i
yz 3

w o

k h
K

p r
 , 

yx i
yx 4

w o

k h
K

p r
 , 

yy i
yy 4

w o

k h
K

p r
 , 

zz i
zz 2

w o

c h
C

p r


 , 

zx i
zx 3

w o

c h
C

p r


 , 

zy i
zy 3

w o

c h
C

p r


 , 

xz i
xz 3

w o

c h
C

p r


 , 

xx i
xx 4

w o

c h
C

p r


 , 

xy i
xy 4

w o

c h
C

p r


 , 

yz i
yz 3

w o

c h
C

p r


 , 

yx i
yx 4

w o

c h
C

p r


 , 

yy i
yy 4

w o

c h
C

p r


 . 

3. Results and discussion 

The calculation results show that angular coupling stiffness coefficients Kzx, Kzy, Kxz, Kyz and angular 

coupling damping coefficients Czx, Czy, Cxz, Cyz are all equal to zero. Angular stiffness coefficients 

Kxx=Kyy, Kxy=-Kyx. Angular damping coefficients Cxx=Cyy, Cxy=Cyx=0. 

3.1. Effects of centrifugal inertia under different rotating speed 

Figure 3 shows the effects of centrifugal inertia on dynamic stiffness coefficients under different 

rotating speed. It can be seen that the dynamic stiffness coefficients increase linearly with the increase 

of rotating speed. The effect of rotating speed on axial stiffness coefficient Kzz is greater than that on 

angular stiffness coefficient Kxx (Kyy). However, the effect of rotating speed on angular coupling 

stiffness coefficient Kxy (-Kyx) is the smallest. At the same time, it can be found that the dynamic 

stiffness coefficients with centrifugal inertia are basically the same as those without centrifugal inertia. 

The relative errors increase linearly with the increase of rotating speed. When the rotating speed is 

12000 r·min
-1

, the relative error is respectively 0.68%, 0.81% and 0.19%, which can be neglected. 

3000 5000 7000 9000 11000 13000 15000
3

4

5

6

7

8

9

10

11

 / rmin
-1

K
zz

 

 

Without centrifugal inertia

With centrifugal inertia 

3000 5000 7000 9000 11000 13000 15000
1.5

2

2.5

3

3.5

4

4.5

 / rmin
-1

K
xx

 

 

With centrifugal inertia 

Without centrifugal inertia

3000 5000 7000 9000 11000 13000 15000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

 / rmin
-1

K
x

y

 

 

Without centrifugal inertia 

With centrifugal inertia

 
(a)                                                        (b)                                                   (c) 

Figure 3. Effects of centrifugal inertia on dynamic stiffness coefficients under different rotating speed. 
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Figure 4 describes the effects of centrifugal inertia on dynamic damping coefficients under different 

rotating speed. The figures show that the dynamic damping coefficients increase with the increase of 

rotating speed, which is basically linear. The effect of rotating speed on axial damping coefficient Czz is 

greater than that on angular damping coefficient Cxx (Cyy). Compared the dynamic damping coefficients 

with centrifugal inertia and those without centrifugal inertia under the same rotating speed, it is known 

that the two are exactly the same, so centrifugal inertia has no effect on dynamic damping coefficients 

when rotating speed changes. 

3000 5000 7000 9000 11000 13000 15000
1.2

1.6

2

2.4

2.8

3.2

3.6

4

 / rmin
-1

C
zz

 

 

With & without centrifugal inertia 

 
3000 5000 7000 9000 11000 13000 15000

0.5

0.7

0.9

1.1

1.3

1.5

1.7

 / rmin
-1

C
x

x

 

 

With & without centrifugal inertia 

 
(a)                                                                                    (b) 

Figure 4. Effects of centrifugal inertia on dynamic damping coefficients under different rotating speed. 

3.2. Effects of centrifugal inertia under different film thickness 

Figure 5 shows the effects of centrifugal inertia on dynamic stiffness coefficients under different film 

thickness. From the figures, we know that axial stiffness coefficient Kzz and angular stiffness coefficient 

Kxx (Kyy) decrease rapidly with the increase of film thickness firstly, and then the trend of decline is 

slow and tends to zero. Besides, the change of Kzz is more significant than that of Kxx (Kyy). The angular 

coupling stiffness coefficient Kxy (-Kyx) decreases gradually and tends to zero as the film thickness 

increases. Compared the dynamic stiffness coefficients with centrifugal inertia and those without 

centrifugal inertia, we can know that the relative errors increase as the film thickness increases, and the 

relative error is respectively 3.26%、5.08% and 0.26% when the film thickness is about 15×10
-6

 m. 

Figure 6 gives the effects of centrifugal inertia on dynamic damping coefficients under different film 

thickness. The figures show that axial damping coefficient Czz and angular damping coefficient Cxx (Cyy) 

are decreased rapidly with the increase of film thickness and the change of Czz is more obvious. With a 

further increase of film thickness, axial damping coefficient and angular damping coefficient decrease 

slowly and tend to zero. The dynamic damping coefficients with centrifugal inertia are exactly the same 

as those without centrifugal inertia under the same film thickness. Therefore, centrifugal inertia has no 

effect on dynamic damping coefficients when film thickness changes. 
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Figure 5. Effects of centrifugal inertia on dynamic stiffness coefficients  under different film thickness. 
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Figure 6. Effects of centrifugal inertia on dynamic damping coefficients  

under different film thickness. 

4. Conclusions 

In this paper, the stiffness and damping coefficients are obtained by solving the dynamic Reynolds 

equation using the perturbation technique. Results show that the effects of centrifugal inertia on axial 

stiffness coefficient and angular coupling stiffness coefficient can be neglected under different rotating 

speed and different film thickness. When the values of rotating speed and film thickness are large, the 

effect of centrifugal inertia on angle stiffness coefficient cannot be ignored. Centrifugal inertia has no 

effects on dynamic damping coefficients with the variation of rotating speed and film thickness.  

It should be noted that the fluid pressure in this work is greater than cavitation pressure, and a cavitation 

phenomenon doesn’t takes place. However, when the film thickness is small or the fluid is oil, the fluid 

pressure may be less than cavitation pressure, which should be studied in the future. 
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