
IOP Conference Series: Materials
Science and Engineering

     

PAPER • OPEN ACCESS

Numerical Simulations of the Ohno Continuous
Casting Process for Mg - based Amorphous Alloys
To cite this article: Zhao wei Zhang et al 2018 IOP Conf. Ser.: Mater. Sci. Eng. 382 022023

 

View the article online for updates and enhancements.

You may also like
The influence of cooling parameters on the
speed of continuous steel casting
G O Tirian, C A Gheorghiu, T Hepu et al.

-

Two Paradigms on Study Slab Continuous
Casting Process with Mold
Electromagnetic Stirring
Zuosheng Lei, Bin Li, Yueming Zhou et al.

-

A model for decision support in continuous
steel casting
Henrik Saxén and Markku Sillanpää

-

This content was downloaded from IP address 18.188.241.82 on 01/05/2024 at 21:48

https://doi.org/10.1088/1757-899X/382/2/022023
/article/10.1088/1757-899X/294/1/012062
/article/10.1088/1757-899X/294/1/012062
/article/10.1088/1757-899X/424/1/012035
/article/10.1088/1757-899X/424/1/012035
/article/10.1088/1757-899X/424/1/012035
/article/10.1088/0965-0393/2/1/006
/article/10.1088/0965-0393/2/1/006
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjstpxj0Yku292cTNK4xvPndic-lXKipAk2xSqH3oM9GXpWH9FKoLxFbfb6lA5SyfdIWZ-LB_aF-9dFBO5zqhuumfuV3hCZV2TFtOpUD9PXLq40znFe3Dvqd3Hs4fA5ROTwyruWHfeDzmXEksvZuwwxfs3Pyf13R7755xnGyy3w3eThZe4OUMC41v-om6bMXQO41igBCkAnunjIHWoPFl6ULvkuTCB78bfimSnYNKiKExwaD1JDd_2pstzjGcQiNd8wPkvhAKSh2nXbSLIkRC3s79riuH3b9OvC_f_PSi-ujP3eEt8IuawnSCCiZ2nlqUa-QFYCY2Ouevaq6qtbWFuvEWma8geA&sig=Cg0ArKJSzC3kkgnDz_pQ&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890‘’“”

AMIMA 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 382 (2018) 022023 doi:10.1088/1757-899X/382/2/022023

 

Numerical Simulations of the Ohno Continuous Casting 

Process for Mg - based Amorphous Alloys 

Zhao wei ZHANG, Jun cheng LIU, Juan FENG, Shen qiu ZHAI, Rui DING 

School of Material Science and Engineering, Shandong University of Technology, 

Zibo, Shandong 255049, China 

Email: 1649310770@qq.com 

Abstract: The Ohno continuous casting process for the Mg-based amorphous alloy is 

simulated using the finite element method. The influences of the temperature in the mold 

mouth, the cooling distance and the casting rate on the temperature field and the shape of the 

solid-liquid interface are investigated. It is found that when the temperature in the mold mouth 

increases from 800℃ to 950℃, the convexity of the solid-liquid interface is gradually 

decreasing and the position of the interface is moving outward along the mold. When the 

cooling distance is extended from 45 mm to 85 mm, the profile of the solid-liquid interface has 

little change while its corresponding position is gradually far away from the mold mouth. 

When the casting rate increases from 1.33×10-4 m·s-1 to 3.33×10-4 m·s-1, the solid-liquid 

interface is moving back and forth toward the outside and inside of the mold mouth. The 

optimal process parameters in the Ohno continuous casting process identified in the 

simulations are 900℃ for the temperature in the mold mouth, 2.50×10-4 m·s-1 for the casting 

rate and 60 mm for the cooling distance. The change in the temperature with the time under the 

optimum parameters is also obtained and the results indicate that the temperature drops rapidly 

at the very early process and then keeps almost the constant. 

1. Introduction  

A Mg-based bulk metallic glass is an amorphous alloy system which possesses the good glass forming 

ability (GFA), the low density and the high material strength. The Mg-based amorphous alloy is 

considered an engineering material with a great potential for various applications since abundant Mg 

resources are readily available and can be cheaply processed. For example, Mg65Cu25Y10 as an 

amorphous alloy in Mg-Ln-TM has the highest ΔTx (super-cooled liquid region) and the highest 

GFA[1]. The alloy has a ternary eutectic component with a melting point of 727.7 ℃ and the critical 

cooling rate (Rc) for the glass formation is about 50 K·s-1.[2] The superior properties of this alloy have 

attracted great attentions from many researchers.  

At present, the preparation of amorphous alloys was realized using the continuous preparation[3,4]. 

The banded amorphous alloys had been used in actual production. The bulk metallic glass alloys could 

be prepared with a transient production process, such as the water quenching method, the copper mold 

casting method and the suction casting technique[5-7]. However, the size and the length of the 

amorphous alloy from those processes limited its wide applications. Those limitations could be 

overcome using the Ohno continuous casting solidification system. In this system, the sintered body of 

the master alloy is placed in a graphite crucible and the casting mold is then heated to continuously 

cast the ingot. The temperature on the mold wall, which contacts with the molten of the Mg-based 

alloy, needs to be kept above the solidification temperature of the Mg-based alloy to avoid the 
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formation of crystal nucleus on the mold wall and the heat dissipation in the side of the solidification 

interface. The reason to keep a strong heat dissipation in the axial direction is that the solidification 

process occurs only in the front of the ingot. The action of the surface tension in the process of the 

cooling ingot allows it to maintain the shape of the molten metal[8,9]. Therefore, this method can be 

used to process the continuous preparation of the bulk metallic glass. However, this process requires a 

precise control of the process parameters such as the mold temperature, the casting rate and the 

cooling distance. Numerical simulations have been used to optimize the process parameters. For 

example, the numerical simulations were used by Zhao et al.[5] to simulate the diameter, the wall 

thickness and the water temperature of the quartz tube. The simulation was also used to optimize the 

process parameters for the desired microstructure and the phase structure of the amorphous 

alloy[10,11]. 

In the Ohno continuous casting process, the position of the solid-liquid interface is important to the 

amorphous component and surface smoothness of the castings during the Mg-based amorphous 

solidification process. The excellent mechanical properties can be obtained when an appropriate 

position of the solid-liquid interface is maintained during the entire casting process. In this study, the 

change in the temperature in the casting system process is simulated using the finite element method. 

The effects of key process parameters such as the temperature in the mold mouth, the casting rate and 

the cooling distance on the casting results are evaluated and the optimal process parameters are then 

identified. The numerical simulations provide excellent guidelines in the process of the appropriate 

parameters selection for the experiment in the casting process. 

2. Physical and Mathematical Model 

2.1 Model and Assumptions 

For different air velocities, the larger the air flow is, the more uneven the temperature field is[12]. In 

order to simplify the calculation, the mathematical model needs to be established to describe the 

temperature field. The schematic of Ohno continuous casting solidification system is illustrated in 

Figure 1. The following assumptions in the mathematical model are made: 

(1) The temperature of the crystallizer inner wall is constant during the continuous casting process.  

(2) The metal liquid in the mold is kept in a laminar steady state and there is no axial heat transfer 

in the mold.  

(3) The possible physical properties difference is not considered in the interface region between the 

solid and liquid metals.  

(4) The constitutional super cooling of the metal in the solidification dynamics is not considered. 

The coordinate system of the physical model[13,14] is also shown in Figure 1. The center of the 

export surface of the mold is defined as the origin of the coordinate. The specific boundary conditions 

are described as: 

(1) The temperature in the boundary is equal to the melting point of the alloys 

(2) The mold is always heated. 

(3) Cooling water is passing through in the boundary. 

(4) The casting rate is constant.  

 

Figure 1 Physical model 

1.Constant temperature heat source; 2. Molten metal; 3. Heated mold; 4. Ingot; 5. Cooling water; 

6.Casting direction; 7. The finite element mesh of the calculation. 
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2.2 Heat Transfer Equation of the Temperature Field 

The heat transfer equation of the temperature field can be expresses as  
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where λ is the thermal conductivity (W·m-1·K-1); T is the temperature (K); R is the radius (m); ρ is 

the density (kg·m-3); Cp is the specific heat capacity (J∙kg-1·K-1); v is the speed (m·s-1) and q is the 

endogenous heat (the latent heat of the crystallization released per unit time, W·m-3). 

2.3 Thermal Physical Parameters 

2.3.1 Thermal Conductivity in the Mold 

In the mold, the temperature in the molten metal is higher than the metal melting point, which forces 

the heat transfer by convection between the metal and the casting mold. Its thermal conductivity[15] is 

expressed in the form of:  

λ/dNλ u =1
……………………………………………(2) 

In the above equation, λ is the material melt thermal conductivity; d is the diameter of the casting; 

and Nu can be written as  
80025005 .

eru )R(P..N += ……………………………(3) 

and  

 /r CP = ………………………………………(4) 

 /e dR = ………………………………………(5) 

where C is the specific heat capacity (J∙kg-1∙K-1); μ is the material melt kinematic viscosity (m2∙s-1) 

and ρ is the density of the material (kg∙m-3). 

2.3.2 Water-Cooled Heat Exchange Coefficient 

The heat exchange coefficient for water-cooling is influenced by the water quantity and the water 

temperature. It can be empirically expressed[15] as 
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2
)9.49.35(
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where W is the water flow rate (L∙m-2∙s-1) and Ts is the casting surface temperature (℃).  

2.3.3 The Center of the Axis  

The center of symmetry is taken as the center of the axis, in which an adiabatic heating condition is 

assumed and thus the heat exchange coefficient is zero at this location. 

2.3.4 Specific Heat Capacity 

The relationship between the specific heat capacity of the amorphous metal and the temperature could 

be expressed by the following equations[16]: 

)570(04.0)570(1085.30 10

, −+−+= − TTC sp
………………(7) 

when 570≤T≤690 and  
5.0

, )690()690(05.02.51 −−−+= TTC sp
…………………(8) 

when 690≤T≤760 in the super-cooled liquid region. 

The thermal physical parameters and thermal properties parameters of the alloy are listed in Table 1 

and Table 2, respectively. 
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Table 1 The thermal physical parameters by calculating. 

Temperature (℃) 570 600 630 660 690 720 750 

Specific heat capacity 

(J∙kg-1∙K-1) 
30.5 31.7 32.9 34.1 35.3 47.2 46.45 

Thermal conductivity 

of materials 

(W∙m-1∙K-1) 

640.5 665.7 690.9 716.1 741.3 991.2 975.5 

Thermal conductivity 

in the mold 

(W∙m-1∙K-1) 

810.6 842.4 874.3 906.2 938.1 1254.4 1234.5 

 

Table 2 Mg65Cu25Y10 alloy parameters. 

Density 

(kg·m-3 ) 

Melting 

point(℃) 

Critical cooling 

rate (K·s-1) 

Super-cooled 

liquid region (K) 

Bar 

Diameter(mm

) 

Latent heat 

(J·kg-1) 

2270 727.7 50 61 4-7 269059.7 

 

3. Results and Discussions 

The temperature in the casting mold was calculated by the finite element analysis (FEA) method and 

the process parameters[17-19] affecting the temperature field in Ohno Continuous Casting process 

were obtained including the mold temperature, the cooling distance, the casting rate, the molten metal 

temperature and the pressure head. Because the molten metal temperature and the pressure head in the 

continuous casting process were relatively stable, they were excluded in this study. In order to single 

out the effect of a given parameter on the temperature field, only the selected parameter was allowed 

to change while all other parameters were fixed during the process of the casting rate increased from 

the lowest rate until the connection broken between melt and solidification. The parameters studied in 

this process included the temperature in the mold mouth, the cooling distance and the casting rate. The 

results from the FEA can be summarized as follows: 

3.1 The Effects of the Temperature in the Mold Mouth on the Solid Liquid Interface 

When the temperature in the mold mouth is lower than the melting point of the metal, the solid-liquid 

interface would be in the deep position of the mold mouth. In this case, the friction between the 

casting alloy and the mold wall would be very high and thus it becomes difficult to cast the casting 

alloy out. When the mouth temperature is more than 10℃ higher than the melting point of the metal, 

the solid-liquid interface position would be close to the mold mouth. In this case, the ingot surface 

would be smoother and continuous casting would be easier. When the mouth temperature is just above 

the melt point of the metal, the solid-liquid interface would still be inside the mold mouth. In this case, 

the interface of the casting would become very rough, which could even lead the amorphous alloy to 

be broken during casting. However, when the mouth temperature is too high, the leakage would 

outflow. Therefore, the quality of the casting process would be affected when the temperature in the 

mold mouth is either too high or too low. When the temperature is too high, there is not enough time 

for the overheated liquid to be cooled, which leads to the melt to be cut and results in a leakage 

phenomenon. When the temperature was too low, the solid-liquid interface is moved to the inside of 

the mold mouth and the untimely solidification of the internal molten metal occurs, which is hard to 

cast out. Therefore, an appropriate mouth temperature is very critical for the high quality of the casting 
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process. 

The temperature field in the mold was simulated using the FEA for various temperatures in the 

mold mouth with the cooling distance at 65 mm and the casting rate at 2.33×10-4 m·s-1. The 

temperature distributions in the mold and the corresponding profile and location of the solid-liquid 

interface are shown in Figures. 2 and 3, respectively, for mold mouth temperatures at 820℃, 850℃, 

900℃, 920℃. 

 
Figure 2 Temperature distribution in the mold for the mold mouth temperature at 

(a) 820 ℃, (b) 850 ℃, (c) 900 ℃ and (d) 920 ℃. 

 

 
Figure 3 The influence of temperature on the solid - liquid interface profile and location. 

 

It is seen from Figure 3 that the solid-liquid interface is gradually moving outward when the 

temperature in the mold mouth continues increasing. When the temperature in the mold mouth is low 

at 820℃, the solid-liquid interface is located in the deep inside of the mold mouth, which makes the 

casting surface very rough and makes the metal casting more difficult. When the temperature in the 

mold mouth is 920℃, the solid-liquid interface is almost out of the mouth, which results in a casting 
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leakage. Therefore, it is demonstrated from the above results that 900℃ is the most appropriate 

temperature in the mold mouth to ensure the smoothness of the casting surface and to allow the casting 

process to be carried in an appropriate rate.  

3.2 The Effects of the Cooling Distance on the Solid-Liquid Interface 

The more appropriate the cooling distance is, the better the quality of the ingot is. The cooling distance 

is one of the critical factors to determine the content of amorphous components. The temperature field 

in the mold was obtained for various cooling distances at the mouth temperature at 900℃, the casting 

rate at 2.33×10-4 m·s-1 and the water flow rate at 1.990456 l∙m-2∙s-1. The temperature distributions in 

the mold and the corresponding profile and location of the solid-liquid interface are shown in Figures. 

4 and 5, respectively, for the cooling distances at 50 mm, 60 mm, 70 mm, 80 mm. 

 
Figure 4 Effect of the cooling distance on the temperature field for the cooling distance at (a) 80 mm, 

(b) 70 mm, (c) 60 mm, and (d) 50 mm. 

 
Figure 5 Effect of the cooling distance on the solid-liquid interface profile and location (v=2.33×10-4 

m·s-1, T=900℃, W=1.990456 l·m-2·s-1). 

  



7

1234567890‘’“”

AMIMA 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 382 (2018) 022023 doi:10.1088/1757-899X/382/2/022023

 

It is observed from Figure 5 that the horizontal position of the solid-liquid interface is far away 

from the crystallizer at 80 mm cooling distance, which would result in a leakage accident. It is also 

seen from Figure 5 that the use of the cooling distance at 50 mm results in a shallow solid-liquid 

interface position, which indicates that the cooling distance is too short and it is not conducive to 

casting metal out. As demonstrated in Figure 5, the cooling distance of 60 mm is the most appropriate 

cooling distance considering the quality of continuous casting and casting rate. 

3.3 The effect of the casting rate on the solid-liquid interface  
The temperature field in the mold was obtained for various casting rates at the mouth temperature at 

900℃, the cooling distance at 60 mm and the water flow rate at 1.990456 l∙m-2∙s-1. The temperature 

distributions in the mold and the corresponding profile and location of the solid-liquid interface are 

shown in Figures. 6 and 7, respectively, for the casting rate at 1.50×10-4 m·s-1, 2.00×10-4 m·s-1, 

2.50×10-4 m·s-1 and 3.00×10-4 m·s-1. 

 
Figure 6 The effect of the casting rate on the temperature distribution for the casting speed at (a) 

1.50×10-4 m·s-1, (b) 2.00×10-4 m·s-1, (c) 2.50×10-4 m·s-1 and (d) 3.00×10-4 m·s-1 

 

 
Figure 7 Effect of traction speed on the solid-liquid interface profile and location (Ts=900 ℃, l=60 

mm, W=1.990456 l·m-2·s-1). 
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The distance between the solid-liquid interface and the exit of the crystallizer should be kept in an 

appropriate distance to obtain good quality casting. When the solid-liquid interface is located in the 

deep inside of the crystallizer, casting can fail due to the broken alloy. When the solid-liquid interface 

is located just in the inside of the crystallizer, the interface of the casting ingot can be rough and the 

amorphous content in the alloy can be low[20]. The best position of the solid-liquid interface should 

be about 1.24 mm inside the crystallizer which comes through simulation test. It is clearly 

demonstrated from the interface profile shown in Figure 7 that the use of the casting rate at 2.50×10-4 

m·s-1 results in a smoother surface of the product.  

3.4 Temperature Field Optimization 

The simulation was carried out using ideal process parameters identified above: 900℃ for the 

temperature in the mold mouth, 2.50×10-4 m·s-1 for the casting rate and 60 mm for the cooling distance. 

The resulting temperature distributions in the mold at various times are shown in Figure 8.  

 
Figure 8 (a) The temperature distribution at 100 s 

(b) The temperature distribution at 250 s 

(c) The temperature distribution at 500 s 

(d) The solid-liquid interface after stabilization. 

 

It can be seen from the figure that the temperature field trends gradually to be smooth and stable as 

casting progressing and it reaches a stable state after 500s. When the solid-liquid interface is located at 

about 1.24 mm inside the crystallizer, the shape of the solid-liquid interface becomes a smooth circular 

incurve, as shown in Figure 8 (d). The variation in the temperature at the central axis location with the 

casting time is shown in Figure 9. It is seen that the temperature quickly reaches to the steady state 

after a short period of time. The maximum temperature change rate is calculated to be about 60 K·s-1. 

This cooling rate could be achieved by the Ohno Continuous Casting experiment for the amorphous 

alloy preparation. 
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Figure 9 Relationship between temperature and time at solid-liquid interface. 

4. Conclusions 

Based on the above results from the finite element analysis, some conclusions can be made: 

(1) The maximum temperature change rate of Mg65Cu25Y10 was determined to be about 60 K·s-1 

and this cooling rate can be achieved by the Ohno Continuous Casting.  

(2) When the mold mouth temperature rose from 800℃to 950℃, the high-convexity shape of the 

solid-liquid interface was gradually decreasing and its corresponding position was gradually moving 

from the inside of the mold toward the outside of the mold. When the temperature was at 900℃, the 

solid-liquid interface was kept in an appropriate distance from the mouth, which prevented the casting 

alloy from casting out of the mouth and eliminated the potential leakage accident. Therefore, 900℃ is 

an optimal temperature in the mold mouth in preparing the Mg65Cu25Y10 amorphous alloy by the Ohno 

Continuous Casting. 

(3) The profile of the solid-liquid interface was almost independent of the cooling distance but the 

position of the interface was gradually departing from the mold mouth with an increased cooling 

distance from 45 mm to 85 mm. The optimal cooling distance is 60 mm, at which high content of 

amorphous alloy can be easily cast out.  

(4) When the casting rate rose from 1.33×10-4 m·s-1 to 3.33×10-4 m·s-1, the solid-liquid interface 

position was moving back and forth toward the outside and inside of the mold as the solidification 

process was progressing. The optimal casting rate is 2.50×10-4 m·s-1, at which the solid-liquid interface 

is stable and robust. 
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