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Abstract. The number of papers in the topic of autonomousiclehresearch is growing
exponentially. This paper addresses the probleseléfdriving a car on tire grip limit, in other
words it gives a simple model of a race car dri@miving is transformed into a simple deep
learning problem, where the agent has one actia,i$ the direction in which the actual speed
vector needs to be modified for the next step, thedenvironment state contains of the actual
position and speed. The environment models thetrack as a two colour map, to decide on-
and off track positions, and the car as a pointsmaih maximal possible acceleration
according to the so called GG diagram. Results siativthe agent can learn how to drive on
the track under the described circumstances.

1. Introduction

Self-driving is a widely researched field. In thverk, we deal with the situation of self-drivingcar

on the tire grip limit. Although under normal diigj conditions, this is a rare situation, and it is
mainly interesting in racing, but in case of cadlis avoidance, when the vehicle must use its
maximum potential to change its actual motion stai@neuvering capabilities on the grip limit has a
big importance in production vehicles also.

In general, during self-driving the task is to gohvehicle inputs, (e.g. pedals, and steeringgbtas
on information coming from sensors. (LIDAR/RADAR,a@eras, GPS/INS, etc.) This can be
performed in several ways. [1] One extreme appraacthe so called end-to-end solution, where
neural networks are used to map sensor signalseticle controls [2] In case of other, more
conservative approaches, the self-driving taslsislly decomposed into sub-functions. [3]

Sensors Perception Planning Control Actuators
- Lidar - Object - Trajectory - Control - Wheel
- Radar detection, planning algorithms torques
- Camera » tracking »| - Prediction » -PL LQ, - Steering
-GPS - Traffic - Behaviour Robust - Pedals
- Etc. signs planning - Ete. - Etc.

- Ete. - Etc.
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Figure 1. A common way for self-driving problem decomposition
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One of the sub-functions during self-driving isjécory planning. [4] In case of trajectory
planning, one interesting issue is to understarnd fagpid changes in vehicle motion are possibletwha
trajectories can the vehicle perform. Tire gripdlewill have big effect on this. As grip level isvays
varying, and it is a parameter that is basicallpassible to predict it in advance (with the levél o
accuracy, required in racing), it is a common sofuto aim for a worst-case grip level, and plan
trajectory with that.

2. Race car driving

In contrast to road car driving, understanding ghip limit and being able to describe its effecting

variables, is critical for winning in racing envinment. To put grip sensitivity in perspective, 1%
change in grip level results 0,15% change in lapeti[5] In numbers, this means that on a 1minute
40second lap, dropping average grip level fromtd.0.99 will result in 0.15sec increase in lap time

So, if we want a racing driver model, that can tlsis 0.15% time difference, we should first

understand how real race drivers drive their velsioh the limit.

2.1. Acceleration direction on the GG diagram

There are several works addressing racing lined,race car driving [5][6][7] A common thing to
note in these works is, that in the world of racimpen racing drivers talk about issues in thgis)a
about car behavior, or they just want to identiffaen a given phenomenon occurred, they use corner
numbers, and phases of those corners. For exathplewill say “During turn in of corner number 5
the car has huge snap oversteer” or “In cornemiid,corner the car is understeering a lot”. These
cornering phases are described in depth in [8] dewrent work the important point is, that these
phases basically show the direction of the resuiaceleration in the center of gravity. This iswh

in Figure 2. The diagrams, shown in Figure 2 are $b-called GG diagrams [8]. A common
conception in racing, is to plot the longitudinaldalateral acceleration in X-Y scatter plot, that i
called the GG diagram. This diagram has a lot fdrmation about the track-vehicle-driver system,
and the available grip.

Braking

Turn-in (high longitudinal acc.)
Turn-in (high lateral acc.)

Mid corner

Exit (high lateral acc.)

Exit (high longitudinal acc.)

S e

Figure 2. The phases of a general corner in racing. Thdtaesiacceleration
in the centre of gravity is also shown in a vehfoted frame.
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Figure 3. GG diagrams for a fast lap, under Figure 4. GG diagrams for stable (grey) and
low grip e.g. wet (black) and high grip e.g. unstable (black) vehicle behaviour during the
dry (grey) conditions. turn-in phase of a corner.

In Figure 3 two GG diagram can be seen, one for, lamother for higher grip conditions.
Obviously, the size of the GG diagrams correlate with the grip level. Higher grip will result in
higher accelerations for the vehicle. In Figurehd effect of vehicle stability can be seen. When a
vehicle motion is unstable in a given directiortfed GG, the driver cannot use the full potentiathef
vehicle-track system, so the magnitude of the G&at direction is smaller than it could be. This
unused grip potential can result in a “dented” ghas shown in Figure 4. Although only these two
parameters are mentioned here, but almost evergriant vehicle or driver or track parameter effect
the GG shape. This is the main reason, why it ¢@a@d and simple concept to model the vehicle
dynamic properties with it.

The important conclusion from above is, that duniage car driving there is a layer of decision
making in the driver’s mind, that is deciding abthg desired direction on the GG diagram. Racing
drivers decide in each moment about how they wanuge the vehicle’s motion-state-changing
capability, which direction they want to change #peed vector. Then, the next layer in their dgvin
process is that the driver needs to actuate thieleghputs, (e.g., steering wheel, pedals) in § tixat
the desired acceleration direction is created, ha shortest time, with the maximum possible
magnitude.

During this process, the racing driver does noehalear trajectory in mind. He is continuously
trying to find the proper direction, and maximumgn#aude of the GG, and the trajectory evolves
while the boundary of the GG diagram is trackedrimythis boundary tracking, there is a certain
level of risk arising from the fact that the cancslide off the track when crossing its limits. For
example, during a qualifying session, when theeatgwsually have 3 — 4 attempts to make their
quickest lap time, it is usual that we see lapsirgeiguicker and quicker from attempt to attempt.
There can be technical reasons for this (e.g. teackution) but the fact that drivers acceptinghleig
and higher chances of making mistakes, is anotbgrr&ason for this. Managing this risk is also
important, to have better and better lap times,itisddone by driver intuition during race carwiinig.

2.2. The D2G2 decomposition
For being able to model this intuition in risk mgament, and skip the problematic trajectory plagnin
step (that needs deterministic motion states aegumoint of the driving algorithm), we suggest a new
way of decomposing the driving task, as shown gufés.

In the first sub-function, based on sensor inforamatthe desired direction of the GG (D2G2) is
defined. After, in the second, so called vehiclaaiyic control (VDC) sub-function, the actuators are
controlled with a goal to realize x-y acceleratiorihis direction, with the highest possible magdé,
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Figure 5. The “desired direction on GG” (D2G2) type probldetomposition for self driving.

in the shortest possible time. This second, VDQ mamot presented in this work, the unperfect
behavior of this layer, is handled with the driwarhicle, through the shape, and uncertainnesseof th
GG diagram. In the followings, a solution is prdsenfor the first, Driver Intuition part of the
algorithm.

3. Deep learning background

Modelling this kind of human intuition with convéoal model-based control techniques is not easy.
In the past years however, results in the fieldlegp learning shown promising solutions, without
hand crafted features, or models, with new maclgaming techniques. For example, levels of image
and speech recognition, that were impossible tohrdémfore, become possible with these methods,
and in [9] an artificial intelligence (A.l.) agemtas trained with deep learning methods, to plajetab
games like Chess and Go. The A.l. played highezllthan human players do, and it was shown that
some level of intuition evolved in the agent.

These kind of “playing” agents usually trained wsih called reinforced learning techniques, using
deep neural networks.[10] Reinforcement learning)(R an area of machine learning inspired by
behaviourist psychology, concerned with how sofenagents ought to take actions in an environment
SO0 as to maximize some notion of cumulative rewdmdmachine learning, the environment is
typically formulated as a Markov decision procdd®P) where an episode of this process (e.g. one
game) forms a finite sequence of states, actiodganards. A Markov decision process relies on the
Markov assumption, that the probability of the ngtette, depends only on current state and actign, b
not on preceding states or actions.[11]

So, if we want to model race car driving on thepdnmit, turning race car driving into such a
game, and defining a suitable MDP as environmesins to be a step in a good direction.

4. Defining the race car driving environment
In general, an MDP is defined as follows: The emwnent is in a certain state and the agent can
perform certain actions in the environment. Ondhe hand, these actions result in a reward, on the
other hand actions also transform the environmewt laad to a new state, where the agent can
perform another action, and so on. The rules fow lagtions are chosen are called policy. The
environment in general is stochastic, which mehasext state may be somewhat random.
Generally, in case of race car driving, the follogs could be chosen:

= The state of the environment can be described bgosesignal values from the car, (e.g.

LIDAR, Camera pixels, Inertial sensors, GPS positeic.).
= The action taken by the agent could be the desliredtion of the GG diagram (D2G2).
= As reward, the negative value of the time spent/beh two steps (timestep), could be used.

4.1. The environment
Using the state definition presented above woulgiire a relatively complicated environment model.
In this work we chose the simplest possible cadeetable to test our idea.
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4.1.1. Thedtate

To test our approach, we defined the simplest enmient that is still able to represent the mentione
phenomena of racing. In this simple case, the t@ok is given by a three-colour image defining on
and off-the-track positions. The vehicle is treatsla point, and its position is defined by the
coordinates of the pixels.

Inside and outside of the
track is identified with
different colours

180 | -180

Figure 6. Track representation. Hungaror Figure 7. GG diagram representation 41
15 corner, 1800 by 1600 pixel§100 pixels 41 pixels. (18 pixels equal 20rfysAlso
equals 10m). D2G2 representation is shown.

Although this game definition does not require ptghy valid scale, we wanted to test our
algorithm in scale that is relevant to real wortthditions. We have chosen to test our A.l. in akra
line that is a copy of the Hungaroring race tradk'st corner. Our track picture size will be 1800
1500 pixels, where one pixel equals 0.1 meterghAgeal track width is approximately 13 meters thi
means 130 pixels, and the area covered by thisecesn180 m byl150 m. We've chosen the time
between two steps as 0.3 seconds, that mean 1128t lan/h motion equals to 100 pixels displacement
in one step. Using these numbers, if a speed véstohanged by 18 pixels between two steps, it
reflects to a 20 mfsacceleration that is normal for a racing car. @ithh it might seem too simple for
the first sight, but the vehicle’'s dynamic propestiare all modelled purely with a GG diagram. The
GG is a black and white, 41 by 41 pixel image, dbsw the maximal resulting acceleration in
longitudinal and lateral acceleration plane. Faadibing the state, a 4-element state vector isao
that is 2 coordinates (x, y) of vehicle speed, armbordinates (x, y) of vehicle position in thecka
(global) coordinate system, given with pixels.

4.1.2. Theaction

The action is then given by a single real numbethe -180 ... +180 range, that defines the D2G2.
Here O is the forward direction, -90 refers to plateral acceleration with turning right, (+90deg i
left) and, £180 is pure longitudinal acceleratiarthe direction of braking. The fact that the raadl
the desired GG directions will be different in reedrld, is modelled with an additive error with
normal distribution in -3 ... +3 sigma.

4.1.3. Thereward

The reward is defined as -1 for each step. Whenv#tdcle goes off the track, the episode is
terminated, and the reward is defined as the negatlue of distance remaining to the finish line
multiplied by a given constant (in our case 2).sTtiefinition will give higher episode reward if the
agent chooses actions that results in less stegs tfime) and leaving the track closer to the Hitiise.

In the step, when the vehicle crosses the finisd, Imeaning that the speed vector in the given step
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crosses the finish line, the reward is definedhgyportion of the speed vector that is before ithsl.
E.g. the finish line cuts the speed vector in bk, reward is -0.5.

4.1.4. Sep calculation. In each step, the agent decides an action. Thererioe representing the
uncertainness in the resulting GG is added. As dhtn is the desired GG direction (D2G2), the
change in speed vector can be calculated in vefikeld reference frame. Next, the change of speed i
transformed into global coordinates and added dccthirent speed. New speed, and new position can
be calculated.

Note, that the agent has no initial information athie track and car. Our goal is to train an agent
for a given track, with a vehicle described witlgimen GG diagram. At this point we don’t need an
agent that can drive any track, and any car. Alghowe will use constant GG diagram, but in this
concept, it is easy to model speed dependent G@olonforce effects or use GG diagram as location
dependent to deal with track surface variationsany the GG's stochastic properties dependinghen t
desired direction, to model e.g. unstable vehielealvior in the turn in phase of the cornering. W p
to address these cases in a later work.

Figure 8. Explanation of the environment, the state anwbadefinitions.

5. Defining the net for the agent

After defining the environment, the next step isdexide how to model the A.l. agent. There are
several different solutions for reinforcement leagnproblems. The first breakthrough in this filed,
[13] used so called Q-Learning, while in [9] a midbl@sed on actor-critic method is presented.

Driving in simulation environment was solved in sel ways, [12],[14], but those works
presented end-to-end strategies, so the agentottedtisteering and pedal positions, while the state
was defined as screen pixels. We've chosen diffemanch more simple state, and actuator space
definitions. Although our current goal is to solaequite simple game, to test the theory of the
proposed problem decomposition, we'd like to haveamework, that is able to scale to higher
dimension actuator, and state spaces. Among thieod®etwve found in literature, we‘ve chosen deep
deterministic policy gradient (DDPG) method. [15]

In DDPG there are two neural networks. One is theadled actor network, that is defining the
policy to map states into actions, and there is &atled critic network, that is basically tellinige
goodness of an action in a given state.

In our case, the actor network has 4 fully conreetdgers, with 400, 100, 30, 10 neurons, all of
them with ReLU activations. Input for th& fayer is the 4 dimensional state vector [speeg¥edY,
positionX, positionY], and the output of the laayér is a single action value, defining the D2G2.

The critic network has 5 fully connected layersttmvReLU activations, using 300, 200, 90, 40, 20
neurons. The critic network is using the state acttbn values as inputs, to predict “goodness’rof a
action in a state. The state is used as an inpuh&Z! layer, but the action is injected only in tHg 2
layer. This is a commonly used trick in the literat that we applied too. The output of the lageta
is the temporal difference value, that is usedaizwtate the gradients of both the actor, andccriti
networks.
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6. Training and results

There are several tricks and thumb rules that nti@ireing of such networks effective. One of these
techniques, is to use experience replay. It is lhighiggested to use a replay buffer to store the
experiences of the agent during training, and tialomly sample experiences to use for learning.
This technique is known as experience replay.

It is also common, to use human played episodemgiuhe learning process, although newer
techniques based on self-playing [9] do not usedruplayed samples or other prior knowledge. In
this work we did chose to use these, but basicalyyreally small, number. We defined only 7 human
played episodes, with the goal to have some astguences that lead to crossing the finish lind, an
we used these samples to help the training protredise first 0.5% of the total training episodes
took away control from the agent, and we usedéherded human episodes to generate actions.

In these “human” episodes, we randomly choose dnineo 7 recorded human sequences, and
changed each of its actions slightly during thesegé, by adding some random noise to the actions.
Because of this randomness, it could happen thauweut of recorded actions without reaching the
finish line. In this case we just simply chose mmdactions till finish or running off the track. iBh
way it was possible to create huge number of diffeexperiences that coming from episodes that stay
on track for more steps, and this was really usaftthe beginning of the training.

0

200

400 -

600 -~

800 A

1000 A

1200 -

1400

0 200 400 600 800 1000 1200 1400 1600 1800

Figure 9. All of the human played episodes (7 pcs.), usegktterate
exploration experience at the beginning of theniray

During training we used the first 0.5% of total ren of training episodes to generate these human
played experiences in the experience replay. Astioread earlier, during these episodes we added
random noise to the human played actions. Thieneés a uniform random number. In the beginning
of the 0.5% training period, this random uniforrmrber was between -20 ... +20 deg range, and at
the end of the 0.5% period, and it decreased lin¢arl ... +1 deg. This assured that at the b@gm
of the training we had exploration, but in somewbantrolled, not totally random way. The total
number of training episode were 150 000, so trst Gr5% equalled 750 episodes. Total training run
on a single CPU core about 8 hours. It is necegsargention, that the training time was basically
slow because of the environment was programmedeffatient, there is a lot of potential in
optimising the environment functions.
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After the training described before, results shotinad the agent learned how to pick actions tolreac
finish line. It learned the boundaries of the tratlkalso learned the concept of braking multigieps
before a corner and learned to reach way bettdintegs that were shown in the human played samples.

400
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1200 ~
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T T T T T T T T
0 200 400 600 800 1000 1200 1400 1600 1800

Figure 10. Steps of the learned agent.

7. Conclusion
Although current work showed that the D2G2 decontjposof the self-driving problem is feasible, to
tackle real life problems, scaling the method tggkr state space, and more complex environment is
necessary. For this we need to create and testesiversion of the second, VDC part of the D2G2
method, in a proper vehicle dynamic simulation smwnent, and test the proposed D2G2 method
with higher dimensional state vector, e.g. camerel gignals, vehicle state sensors etc.

Another way would be the development of the curremt network and environment, to achieve
quicker training, and test the resulting “ideaklirvariation with different shaped GG diagrams.Als
preparing the algorithm to handle not only one egrbut a whole lap would be an interesting step.
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