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Abstract. One of the main problems of the Modular Multilevel Converter (MMC) for 
ship electric propulsion applications is the significant magnitude of capacitor voltage 
ripple at low speed operation. The commonly used solution is harmonic injection. In 
this paper, the injection rules are explored through the dynamic relationship of MMC 
in a comprehensive way, and the harmonic characteristics of injection current are 
derived. Furthermore, the circulating current controller is modified according to the 
harmonics of injected current with changing frequency, which reduces the ripple of 
capacitor voltage effectively in a wide speed range. Simulation results are shown to 
demonstrate the effectiveness of the proposed method. 

1.  Introduction 
The Modular Multilevel Converter (MMC) has been widely used in the field of high voltage direct 
current (HVDC) transmission [1, 2], and has attracted increasing attention for the application of 
medium-voltage adjustable-speed motor drive [3, 4, 5]. The great potential of MMC for ship electric 
propulsion has been mentioned in [6]. The main challenge of the application of MMC-based drive 
system is the suppression of capacitor voltage ripple at low speed operation. 

In order to suppress the voltage ripples of submodule (SM) capacitor which increase significantly 
as the output frequency decreases, several schemes have been adopted. Harmonic injection is the most 
mature method at present. The values of injected components are usually derived from MMC’s arm 
energy relations. Several components are neglected in the derivation process which make the 
derivation result lack of comprehensiveness. 

The injected circulating current is regulated by the circulating current controller which also 
controls the even harmonics caused by MMC’s mechanism. The performance of the circulating current 
controller is related to the control accuracy of the injected current. Many control strategies have been 
used in the design of current controller, such as repetitive control [7], model predictive control [8], and 
multiple quasi-resonant control [9], but they are only designed to regulate the even harmonics at the 
rated frequency. Meanwhile some other literatures like [10], [11] put emphasis on the control of the 
injected current but neglect the even harmonics which needs to be regulated at the same time. In [12], 
the current controller contains six resonant controllers to regulate the second harmonic and injected 
harmonics at low speed operation, but it is not suitable with the changing frequency.  

In this paper, the injection rules are explored through the relations of mathematical model, and the 
proposed formula of harmonic injection is derived from the rules. The circulating current controller is 

http://creativecommons.org/licenses/by/3.0
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modified according to the changing frequency of injected reference current, which improves tracking 
accuracy. Finally, the novel method shows the superior performance with respect to the reduced 
magnitude of capacitor voltage ripple in a wide speed range. Simulation results verified the validity 
and effectiveness of the method. 

2.  The operating principles of MMC 
The circuit configuration of a three-phase MMC based on half-bridge submodule (HB-SM) for motor 
drive is shown in Fig.1. Each phase consists of the upper arm and the lower arm, and each arm has a 
buffer inductor L and N identical SMs connected in series. The half-bridge SM contains one capacitor 
C and two power devices, S1 and S2. Each SM can be bypassed or inserted by controlling the switch 
states of S1 and S2.  
 

L L

L L L

L

pau

nau

dc

2

V

dc

2

V

 

Figure 1. HB-SM based MMC feeding a three-phase motor 
 
As depicted in Fig.1, assume that MMC is three-phase symmetry and the voltage relations along x-

phase loop can be expressed as (1), where ‘x’ represents a-, b- or c-phase: 
 

px
px dc x

nx
nx dc x

/ 2

/ 2

di
u U u L

dt
di

u U u L
dt


  


   


.                                                     (1) 

 

Here, dcU  is the DC source voltage, xu is output voltage of x-phase, pxu , nxu are the upper and 

lower arm voltages, respectively. pxi , nxi  are arm currents. 

The PWM reference waveforms of the upper and lower arms are given by  
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Here, the harmonic component of the order of the switching frequency are assumed to be 

neglected. *
pau , *

nau  are the voltage reference of upper and lower arm. The output voltage reference *
xu  

is obtained by the output current control. The offset voltage reference *
xzu  is obtained by the 

circulating current control to drive the circulating current zxi .  

Assume that all SM capacitor voltages within each arm are equal during operating, all SMs within 
each arm can be considered as a multi-level controlled voltage source. The relationship between arm 
voltages and the PWM reference waveforms is presented as (3): 

 

 px px px

nx nx nx

u n u

u n u





 



.                                                                 (3) 

 

In (3), pxu , nxu  is respectively the sum of all SMs’ capacitor voltages in the upper arm and the 

lower arm. The dynamics of pxu  and nxu  are obtained: 

 

 

px
px px

nx
nx nx

du
C Nn i

dt

du
C Nn i

dt









 

.                                                            (4) 

 
The dynamic of circulating current is obtained: 

 

 px nxdcx

2 2
z

u uUdi
L

dt


  .                                                       (5) 

3.  The dynamic analysis of MMC with harmonic injection  
Since the ripple magnitude of the SM capacitor voltages is inversely proportional to AC output 
frequency of MMC, some methods are needed to suppress voltage ripple of the SM capacitor under 
low speed operation. The common solution of state of art is the harmonic injection, which nullifies the 
low-frequency components of the capacitor voltage ripple by injecting high-frequency (relative to AC 
output frequency) common-mode voltages and circulating currents with the same frequency. Among 
the previous method, the shape of injected components derived from MMC’s arm energy relations, 
this paper will explore the injection rules through the relations of mathematical model. 

The injected circulating current is denoted as _z hi , and injected common-mode voltage is denoted 

as *
cmu . Assuming the second harmonic of circulating current is suppressed to a negligible level, then 

the arm currents can be expressed by  
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,                                                       (6) 

Where dxI  is the DC component of circulating current in x-phase and xi  is the AC-side current. 

sin( )x si I t   .  

Assuming * dc sin( )
2x

mU
u t , the PWM reference waveforms can be rewritten as: 
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.                   (7) 

 
The relation of the SM capacitor current of x-phase can be expressed by 
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Hence, pxu  and nxu  can be derived from (8) and (9): 
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Here, p0u  and n0u  are the initial values of pxu  and nxu , whose values are both dcU . The second 

terms of right-hand side in (10) and (11) have to be zero in order to maintain the mean value of each 
SM capacitor voltage as a constant. 

 The low-frequency component of pxu  and nxu  which should be nullified are divided into two parts: 

the fundamental component with the same magnitude and opposite phase between the upper and lower 
arms and the second harmonic component with the same value between the upper and lower arms. 

The only way to nullify the second harmonic component is to generate a second harmonic 

circulating current _ 2zi  by controlling *
zxu , and its value is expressed as  

 

 _ 2

cos(2 )

4
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z

mI t
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Thus, (8) and (9) are rewritten as  
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Therefore, the low-frequency component in (13) and (14) can be nullified by the low frequency 

component of *
_z h cmi u . The relation can be derived as (15). 

 

*
_ x _ 2 dc dc .

1 1
( ) sin sin( )

2 4z h cm d z slow freq
i u m I i U t I U t                              (15) 

 

In order to satisfy the relationship of (15), _z hi  can be defined by (16) and h  represents the 

angular frequency of injected high-frequency components.  
 

_ x _ 2 dc dc

sin( )1 1
( ) sin sin( )

2 4
h

z h d z s
cm

t
i m I i U t I U t

U

         
                      (16) 

 

Under the consideration of (16) and (12), the current _z hi  has 4 kinds of frequency component 

which are h  , h  , 3h   and 3h  , the current _ 2zi  has DC component and second 

harmonic component ( 2 ).  

4.  The proposed circulating current controller  
For the harmonic injection method, the injected common-mode voltage can be realized directly by 
changing the reference modulation wave, but the accurate injection of circulating current has to be 
guaranteed by the high-performance current controller. Therefore, the following emphasis is placed on 
the design of the circulating current controller. 

4.1.  The quasi-resonant controller 
As mentioned above, the circulating current controller need to control DC component and multiple 

harmonic components. Although h  is fixed, the output frequency is ranged from 0 to the rated 

frequency in the MMC drive system, the angular frequency, i.e., 2 , h  , h  , 3h   and 

3h   are not constants. Considering the narrow bandwidth of the resonant controller and non-ideal 

factors such as quantization error, the resonant controller may lose its potency. According to this case, 
this paper uses the quasi-resonant controller with wider band instead. 

4.2.  Simplification of the controller 
For making the circulating current controller more practical, the current controller should be simplified. 

It is known obviously from (16) that the magnitudes of 3h   and 3h   are much less than the 
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other components and can be neglected. So only three resonant controllers for 2 , h   and 

h   are needed to regulate circulating current. 

The transfer function from zu  to zi  can be expressed as  

 

 
( ) 1

( )
( )

z
z

z

i s
G s

u s R sL
 


.                                                      (17) 

 
Here, R is the line impedance of the arm. 
The transfer function of circulating current controller at low-speed operation is expressed as (18). 
 

 

PIRC 2 2

2 2 2 2
_ 1 _ 2

( ) /
2

                  + +
2 ( ) 2 ( )

R
p i

c

R R

c c h c c h

K s
G s K K s

s s

K s K s

s s s s

 

   

  
 

   

.                         (18) 

 

Here, _ 1c h h    , _ 2c h h    , c  is the cutoff frequency, pK , iK  and RK  are the gain 

parameter of the controller.  
The output frequency is nearly zero at startup operation. Under this circumstance, the bandwidths 

of the two resonant controllers for h   and h   will be overlapped, the second harmonic and 

DC component can be controlled together by the proportional-integral (PI) controller.  
In order to analyze the overlap degree of the bands of controllers at different operation, the spectrum 

characteristics of PIRC ( ) ( )zG s G s  when 100 2h    and   differs from 2  to 20  are shown in 

Fig.2. 
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Figure 2. The spectrum characteristics of PIRC ( ) ( )zG s G s  

 
As shown in Fig.2, when 8  , the overlap phenomenon is serious, in this case, the resonant 

controller for 2  can be removed and the resonant controllers for h   and h   can be merged 

into one. When 8  , the controller can be designed as (18). 



8

1234567890‘’“”

ACMME 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 394 (2018) 042085 doi:10.1088/1757-899X/394/4/042085

 
 
 
 
 
 

5.  Simulation results 
To verify the validity of the proposed control strategy, a three-phase MMC based induction motor (IM) 
drive system has been implemented as shown in Fig.1. The carrier phase shift modulation with sorting 
method in [13] is applied in this system. The parameters are listed in Table 1. This system is simulated 
in PLECS environment. 
 

Table 1. System Parameters 

MMC parameters 
SM capacitance C 6.3 mF
Arm inductance L 2.5 mH

DC-source voltage dcU  400 V 

Number of SMs per arm N 4 
Carrier frequency 500 Hz

Rated output frequency 20 Hz 

Rated voltage of SM capacitor cu  100 V 

IM parameters 

Rated RMS line current ratedI  25 A 

Rated RMS voltage (line-to-line) ratedU 250 V 

Rated rotational speed rated  600 rpm

Pole pair number pp 2 
 
The operation from standstill to rated speed with the proposed method is shown in Fig.3 while the 

operation with traditional method [12] is shown in Fig.4. In order to be close to the practical 
application of ship propulsion, the load torque is set in proportional to the square of the speed. After 

10 st  , the injection method is removed and the operating mode changes to the normal operation 
mode. 

As shown in Figs. 3-4, the two methods show similar performance in general. However, the ripple 
magnitude in Fig.4 is larger when the motor has just started. The reason is depicted in Section 4.2, the 
frequency of second harmonic is too low at the beginning, which causes the band overlap of PI 
controller and resonant controller, finally results in great control gain of circulating current at low 
frequencies. Therefore, the simulation result shows that the proposed method performs much steady 
on voltage ripple reduction in a wide speed range compared with the traditional method. 
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Figure 3. MMC waveforms for the proposed 
method: (a)rotor speed, (b) a-phase current, 
(c) two SM capacitor voltages in a-phase, 

(d)circulating current of a-phase 

Figure 4. MMC waveforms for the traditional 
method: (a)rotor speed, (b) a-phase current, 
(c) two SM capacitor voltages in a-phase, 

(d)circulating current of a-phase 

6.  Conclusion 
In the paper, an improved harmonic injection method for reduction of MMC capacitor voltage ripples 
under low speed operation is presented. The dynamic relationship of MMC is analyzed in a 
comprehensive way and the harmonic characteristics of injection current are derived. Furthermore, the 
circulating current controller is modified according to the harmonics of injected current with changing 
frequency. Using the proposed method, the ripple of each SM capacitor voltage can be maintained 
within an allowable range. Furthermore, the proposed method shows lower ripple magnitudes at nearly 
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zero speed than traditional method. The effectiveness and validity have been verified by Simulation 
results. 
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