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Abstract. This paper discusses the optimization of cross section of telescopic boom of mobile 

cranes. The extruded section is taken into consideration for the optimization problem. The 

problem has been solved using Lagrange Multipliers method. The area of cross section of the 

boom has been taken as the objective function, so as to minimize the mass, whereas the 

constraint function has been taken as a general function of hardness and stability. The above 

parameters allow us to form a mathematical model for numerical analysis and thus obtain the 

optimum dimensions for the cross section. 

 

1. Introduction 
A crane is a machine which is used to lift and drop heavy materials or to move them in a horizontal 

path. The basic principle of a crane is to create a mechanical advantage to the load applied such that it 

is possible to lift loads a number of times heavier than what is actually possible with that effort. Over 

the years, cranes have developed from a basic wire wound over a pulley, to all terrain, highly 

sophisticated cranes capable of lifting up to a thousand tons. The common uses of cranes are for 

loading and unloading goods, for construction and on the shop floor to aid in the assembly of heavy 

components. They can be classified as follows: 

 

The primary part of a crane is its boom. A boom is a cantilever beam, which may either be fixed or 

hinged at one end. A boom consists of the following parts:[1] 

 

1. The outermost part of the boom is known as mother boom. It consists of the remaining 

sections as well as the mechanism for extension and retraction.  

2. The second section of the boom is known as the middle boom. It is housed inside the mother 

boom.  

3. This is the third section of boom, which is inside the middle boom. The crane hook is 

suspended directly from this section. 

 

A crane boom may consist of plates welded together, or a lattice structure.[2]The boom taken under 

consideration here is the former type, which is mostly employed in truck mounted, rough terrain and 

all terrain cranes. A rectangular cross section is the most conventional one, where four plates are 

welded together. However, higher the number of welds, higher is the chance of failure. Hence, we 
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intend to minimize the possibility of failures by using only two lines of welding instead of four. To 

achieve this, an extruded section may be used, with the cross-section being achieved by bending a 

sheet.[3] 

 

2. Definition of the problem 

The cross-section considered for this study is shown in figure 1 given below: 

 

Figure 1. Extruded cross-section with dimensions. 

 

The optimum dimensions of thin-wall extruded cross-section are to be defined. The top surface is a 

sheet of width ‘a’, and the two sides comprise of sheets of height ‘b’. The fourth side is an arc of 

radius ‘
𝑎

2
’. The thickness is taken as ‘t’ for all the sheets. The ratio of thickness and length is a 

constant, which serves as local stability conditions: [4] 
𝑡

𝑎
= 𝛿1, 

𝑡

𝑏
= 𝛿2.  

Hence, we intend to define optimum dimensions of ‘a’ and ‘b’.  

Area of cross section:  𝐴 = 𝑎𝑡 + 2𝑏𝑡 + (
𝜋

2
) 𝑡(𝑎 + 𝑡) 

    = (𝛿1 +
𝜋

2
𝛿1) 𝑎2 + 2𝛿2𝑏2 +

𝜋

2
𝛿1𝛿2𝑎𝑏 

    = 𝑘1𝑎2 + 𝑘2𝑏2 + 𝑘3𝑎𝑏           (1) 

 

where these substitutions are introduced: 

𝑘1 = (
2+𝜋

2
) 𝛿1, 𝑘2 = 2𝛿2, 𝑘3 =  

𝜋

2
𝛿1𝛿2 

 

3. Objective function and constraint function 

If the material and length of structure are kept constant, then the area function can be taken as the 

objective function (F). 

 

         𝐹 ≡ 𝐴 = 𝑘1𝑎2 + 𝑘2𝑏2 + 𝑘3𝑎𝑏                                                 (2) 
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In order to form the constraint function, axial stress and bending are taken into consideration, 

which are the major loads acting on a boom. Thus the constraint function is represented as a function 

taking into consideration the failure parameters relevant for a crane boom:[5] 

 

        𝜑 =
𝑁

𝐴
+

𝑀𝑥

𝑊𝑥
+

𝑀𝑦

𝑊𝑦
− 𝑅𝑙 = 0                   (3) 

 

where,  N - Axial force 

  𝑀𝑥 , 𝑀𝑦 - Moments of flexion about x and y axes 

  𝑊𝑥 , 𝑊𝑦 - Section modulus for corresponding axes 

  𝑅𝑙 - Limiting stress 

 

The section modulus about x and y axes are represented as functions of cross section areas and 

corresponding sides, as follows: 

 

      𝑊𝑥 = 𝛼𝑥 (𝑏 +
𝑎

2
) 𝐴 , 𝑊𝑦 = 𝛼𝑦𝐴𝑎    (4) 

 

Thus, the constraint function can be represented as follows: 

 

𝜑 =
𝑁

𝐴
+

𝑀𝑥

𝛼𝑥(𝑏+
𝑎

2
)𝐴

+
𝑀𝑦

𝛼𝑦𝐴𝑎
− 𝑅𝑙 = 0    (5) 

 

Coefficients 𝛼𝑥 and 𝛼𝑦 have analytical values: 

 

𝛼𝑥 =
𝑊𝑥

(𝑏 +
𝑎

2
) 𝐴

=
𝐼𝑥

(𝑏 +
𝑎

2
) 𝐴𝑦𝑚𝑎𝑥

 

=  
𝑡[(

2𝜋+1

16
) 𝑎3 +

2

3
𝑏3 + 7344.04𝑡3 − 68.005𝑎2𝑡 − 206.05𝑎𝑡2 − 9626.067𝑏𝑡2]

69.376𝑡 (𝑏 +
𝑎

2
) 𝐴

 

 

𝛼𝑦 =
𝑊𝑦

𝐴𝑎
=

𝐼𝑦

𝐴𝑎𝑥𝑚𝑎𝑥
 

 

 =
𝑡(

2

3
𝑏𝑡2 +

1

2
𝑎2𝑏 + 𝑎𝑏𝑡 +

9

16
𝑎3 +

1

8
𝑎2𝑡 +

1

4
𝑎𝑡2 +

1

8
𝑡3) 

𝑎𝐴(
𝑎

2
)

 

 

Substituting the appropriate ratios of 
𝑡

𝑎
 and 

𝑡

𝑏
 as 𝛿1and 𝛿2 respectively, and plugging in the values of 

𝛿1and 𝛿2 as 0.014 and 0.022 [5] respectively, we get: 

 

𝛼𝑥 = (6.431 × 10−7)(
42749.726

𝜀3
+ 242954.325𝜀3 + 7344.04 −

140506.1983

𝜀2
−

9365.91

𝜀
− 687576.214𝜀) 

 

𝛼𝑦 = (1.4195 × 10−6)(47.619𝜀 +
52826

𝜀3
+

47209.44

𝜀2
+

2077.48

𝜀
+ 0.125) 

 

For recommended range of 𝜀 = 0.65 to 0.80, hence the ratios of maximum and minimum values of 

𝛼𝑥 and 𝛼𝑦 are as follows: 
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𝛼𝑥𝑚𝑎𝑥

𝛼𝑥𝑚𝑖𝑛

= 1.00343, 
𝛼𝑦𝑚𝑎𝑥

𝛼𝑦𝑚𝑖𝑛

= 1.71143     (6) 

 

 

 

4. Mathematical modelling 

The given parameters can be represented by a vector as: 𝑥⃑ = (𝐿, 𝑁, 𝑀𝑥 , 𝑀𝑦, 𝑅𝑙) 

 

And vector of variables is:  𝑦⃑ = (𝑎, 𝑏) 

 

To determine optimum parameters a0 and b0, the Lagrange multipliers method is used. In order to 

minimize or maximize the function 𝐴 = 𝐴(𝑎, 𝑏) at a certain point, it is necessary to satisfy equations:           

 
𝜕𝜑

𝜕𝑎
= 0,  

𝜕𝜑

𝜕𝑏
= 0                        (7) 

 

The Lagrange function can be represented as:[6] 

 

𝜑(𝑎, 𝑏, λ) = 𝐴(𝑎, 𝑏) +  λ𝜑(𝑎, 𝑏)    (8) 

 

where λ is the unknown Lagrange’s multiplier. So the equation (8) can also be written as: 

 
𝜕𝐴

𝜕𝑎
+  λ

𝜕𝜑

𝜕𝑎
= 0, 

𝜕𝐴

𝜕𝑏
+  λ

𝜕𝜑

𝜕𝑏
= 0     (9) 

 

Combining the two equations, the multiplier λ can be eliminated as follows:[7] 

 
𝜕𝐴

𝜕𝑎
+  λ

𝜕𝜑

𝜕𝑎
= 0 

𝑜𝑟, λ =  
− (

𝜕𝐴

𝜕𝑎
)

(
𝜕𝜑

𝜕𝑎
)

 

𝜕𝐴

𝜕𝑏
+  λ

𝜕𝜑

𝜕𝑏
= 0 

 

𝑜𝑟,   (
𝜕𝐴

𝜕𝑏
 )( 

𝜕𝜑

𝜕𝑎
) = (

𝜕𝐴

𝜕𝑎
)(

𝜕𝜑

𝜕𝑏
)    (10) 

 

5. Optimum parameters 

Substituting equation (5) into equation (10) results into:  

𝜕𝐴

𝜕𝑏
[

𝑀𝑥

2𝛼𝑥𝐴(𝑏+
𝑎

2
)

2 +
𝑀𝑦

𝛼𝑥𝐴𝑎2] =
𝜕𝐴

𝜕𝑎
[

𝑀𝑥

𝛼𝑥𝐴(𝑏+
𝑎

2
)

2]    (11) 

After substitution of expression (1) in expression (11), optimum relation of the sides a and b are as 

follows:  

  ξ
𝑜

=  
𝑏𝑜

𝑎𝑜
=  

−4𝑘2±[16𝑘2
2−16𝑘2(2𝑘3−4𝑘1)] 1 2⁄

8𝑘2
= 0.53                                  (12)             

The values of moment of flexion, axial force and other relevant parameters have been obtained from 

[8,9] 
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 -𝑀𝑥 = 550 [𝑘𝑁𝑚], 𝑀𝑦 = 𝜓𝑀𝑥, where 𝜓 = 0.40 − 0.75; 

-Axial force is N=115 [kN]; 

-Limiting stress is 𝑅𝑙 = 196∆ [MPa], where coefficients of stress variation is 

∆= 0.75 − 1.25 

-Bending stress σ 
𝑏

=115.11 [MPa] 

 

Substituting the above values in (5), we get the optimum length of a, i.e. ‘𝑎0’: 

 

𝑎0 = 0.4 𝑚 
 

Substituting this value in ξ𝑜, we get 𝑏0 = 0.212 𝑚 

  

From the formulae, it is evident that the area of cross section is directly proportional to moment of 

flexion, i.e. 𝐴0 = 𝑓(𝜓), for trapezium and box-rectangular cross-sections. The area of cross section is 

found to be inversely proportional to the limiting stress. The variation has been depicted in the 

following figures 2 and 3: 

 

 

Figure 2. Comparison of Surface Area of Box Rectangular, Trapezoid 

                          and Extruded Cross-Sections of Boom with respect to 𝜑 .[10] 
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Figure 3. Comparison of Surface Area of Box Rectangular, Trapezoid  

                          and Extruded Cross-Sections of Boom with respect to ∆.[10] 

6. Conclusion 

In this paper, the optimum dimensions of a hollow extruded cross section for constructing the boom of 

a mobile crane are defined. Simple formulae are derived in the analytical form, which can be put to 

practical use when designing a crane. Comparison between the box section, trapezoidal section and the 

extruded section has been performed from the point of view of minimizing area. By plotting the Area 

vs Moment of flexion curves for all three cross sections, it is seen that the extruded section is more 

economical than trapezoidal section for low values of moment of flexion. However, for greater values 

of moment of flexion, the extruded section proves to be the least economical. 
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