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Abstract. The effect of the deposition technology of gradient TiN/TiO2 coatings, 

applied on Ti5Al4V substrate, on the phase composition and mechanical properties 

has been studied. The films have been applied by reactive magnetron sputtering and 

cathodic arc and glow-discharge techniques. The coatings’ properties have been 

studied by X-ray diffraction (XRD) and nanoindentation tests. The results in the 

present study show that the application of both methods are capable to form 

polycrystalline TiN and TiO2. The coatings deposited by magnetron sputtering are 

monophasic and polycrystalline as TiO2 is in the form of anatase. Those, applied by 

cathodic arc and glow-discharge technique, TiO2 layer is in the form of double-phase 

structure of rutile and anatase. The measured hardness is similar for the coatings 

deposited via both methods. The hardness of magnetron sputtered coatings is 6.3±1.1 

GPa. The values for coatings obtained by glow-discharge is 6.1±1.4 GPa. 

1. Introduction 

Titanium alloys have been widely used as hard tissue replacement materials. However, poor 

tribological properties and possible release of metal products from the alloy in the physiological 

environment could compromise the biocompatibility of the alloy. The deposition of a stable titanium 

dioxide films on hard and wear resistant TiN film could overcome the major drawbacks of the Ti 

alloys whilst promote positive interaction between the metallic implant and the existing bone tissue. 

These materials are applicable in many branches, such as fabrication of different tools which work in 

abrasive environments, food processing industries, where surfaces must be cleanable and resistant to 

microbial contamination, for manufacturing of implants due to their biocompatibility [1-3]. They can 

also be used as self-cleaning and bio-sensor coating, biomedical materials, etc. [4,5]. 

  The discussed coatings can be obtained by a number of different techniques. The ones used by us 

are different physical vapor deposition methods. It should be noted that both magnetron sputtering and 

http://creativecommons.org/licenses/by/3.0
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cathodic arc and glow-discharge provide advantages for controlling the deposition process. This 

guarantees the reproducibility of the film formation and control of its properties [6-9]. 

The aim of our present study is to investigate the influence of different deposition methods on the 

mechanical properties and phase composition of the as-deposited multilayer TiN/TiO2.      

2. Experimental procedures 

The chemical compositions of the bare Ti substrate and the target material used for the experiment, 

determined by JEOL JXCA-733 Microprobe scanning electron microscope (SEM) equipped with 

wavelength dispersive spectrometers (WDS), were shown in table 1. Samples with dimensions 

14×14×4 mm were cut out of 16 mm thick sheet material using the electro-erosion cutting method. 

The as-received samples were single solution treated (ST) for 30 min at 920 °C and water quenched. 

Half of the specimens were precipitated (P) for 4 hours at 500 °C and air cooled. All treatments were 

carried out in ≤ 1 Pa vacuum. The surfaces of the samples were grounded and polished before the 

EBSM. To study the effect of the surface treatment, the EBSM was applied to as-received, ST and ST 

and precipitated (ST+P) samples. 

  

Table 1. Chemical composition (wt. %) of the substrate material. 

Element Al V Fe Mn Co Cr Mo Pd Nb Hf Ti 

Substrate 5.21 4.40 0.14 0.11 0.06 - 0.17 0.15 0.36 0.04 Bal. 

 

The electron beam surface modification (EBSM) was carried out by electron beam installation 

Leybold Heraeus (EWS 300/15–60). The following technological parameters were applied: electron 

beam current – I = 20 mA, accelerated voltage – U = 52 kV, speed of the samples motion – V = 0.5 

cm/s, electron beam frequency – f = 1 kHz, scanning electron beam with sinusoidal dithering. 

Afterwards, all samples were ultrasonically washed with absolute ethanol, acetone, isopropanol, rinsed 

with distilled water for 5 min and dried. 

The TiN/TiO2 coating was applied by two different methods: reactive magnetron sputtering and 

cathodic arc and glow-discharge method using Ti targets with purity of 99.8%. The deposition of the 

magnetron deposited TiN layer took a place in the Ar-N2 atmosphere, as the working pressure was 

1.2×10-1 Pa, during the deposition process, the substrate had been heated to 350° C. The TiO2 film was 

realized in the pure O2 environment, the working pressure was 7×10-2 Pa, as the substrate temperature 

was decreased down to 180° C. The thickness of each coating (i.e. TiN and TiO2, respectively) was 

about 1 μm assessed by the resonant frequency of quartz plate (Intermetalix IL800) coated within the 

same process conditions. In order to minimize the residual stresses and the oxidation, the samples with 

deposited coating were retrieved from the vacuum chamber after the achievement of room 

temperature. 

For the cathodic arc deposition of the TiN, a sidewall positioned evaporating system in a cubic 

vacuum chamber with water-cooled walls was used. The samples were hanged near the center of a 

clockwise-rotating with a frequency of 0.5 Hz turntable. To ensure the coating stress relaxation and 

necessary adhesion a very thin pure layer from the target (at 2.5×10-1 Pa in Ar atmosphere for 5 min., 

bias 600 V, 110 A arc current) was applied. The TiN film was made in a pure N2 atmosphere at 340 °C 

substrate temperature for a time of 60 min., 110 A arc current, bias 250 V and 7.5×10-1 Pa pressure in 

the working chamber. The TiO2 film was made by glow plasma discharge using the uppermost located 

sputtering system in the same chamber. A bias voltage of 1340 V (720 mA current) in a pure O2 

atmosphere at a pressure of 6×100 Pa were applied for a deposition time of 240 min. Both layers’ 

thickness was attained by means of calotest measurements: TiN ~ 1.6 μm, TiO2 ~ 0.6 μm. 

The coatings were characterized by X-ray diffraction analysis using URD6 Seiferd&Co 

diffractometer with CuKα radiation. The registration of the patterns was within 20° to 70° at 2θ scale 
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with 0.1° step and counting time of 10 s per step. The experiments were conducted in symmetrical 

Bragg-Brentano (B-B) mode. 

The mechanical properties of the coatings were characterized by Nanomechanical Tester (Bruker, 

USA). The software program prepared for this experiment consisting of 4 lines with 12 indentations 

each (total of 48 indentations) and 80 µm spacing was utilized. The applied force for each indentation 

was 50 mN. 

3. Results and discussions  

Figure 1 and 2 presents the XRD patterns of the multilayer coatings, deposited on Ti5Al4V alloy. 

Peaks corresponding to α-Ti from the substrate, as well as TiN and a-TiO2 can be seen in the 

diffractogram of the sample obtained by magnetron sputtering (figure 1). Diffraction maxima 

corresponding to r-TiO2, β-TiO2, etc. were not observed, which means that the coatings are mono-

phase (polycrystalline TiN and TiO2).  

 

Figure 1. XRD of multilayer TiN/TiO2 deposited by magnetron sputterring 

The diffractogram of the sample obtained by cathodic arc and glow-discharge (figure 2) shows also 

peaks belonging to α-Ti from the substrate, as well as TiN and a-TiO2. Also, diffraction maxima 

corresponding to r-TiO2 are observed, which means that the obtained coatings are double-phase.  

 These results are in agreement with those published in other studies, where the formation of TiO2 

coatings has been studied. It should be noted that in our case, during the deposition process via 

magnetron sputtering, no bias voltage was applied. This is the reason for the TiO2 to be in single phase 

with absence of rutile. This result correlates with the results published in ref. [10]. The presence of 

rutile phase in the glow-discharge deposited coatings is due to the applied high bias voltage. As stated 

in other studies [10, 11] the rutile phase can be induced in the TiO2 coating by applying bias voltage. 
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Figure 2. XRD of multilayer TiN/TiO2 deposited by cathodic arc and glow-discharge 

The mechanical properties of the coatings have been studied by nanoindentation tests and the 

results are summarized in table 2. Both coatings were tested by a load of 50 mN. The hardness values 

were evaluated from the load displacement curves [12, 13], which are shown in figure 3 and 4. From 

the figures it can be seen that the penetration depth of the indentor after each load is different. This 

scattering of the penetration depths can be explained by the very different surface topography. The 

treatment of the substrates by scanning electron beam is capable to increase the surface roughness 

leading to a larger number of peaks and valleys with higher amplitude. The penetration of different 

surface formation strongly reflects on the penetration level during the measurement. 

Table 2. Nanohardness of the deposited multilayer TiN/TiO2 coating 

Deposition method Hardness, GPa 

Magnetron sputtering 6.3 ± 1.1 

Cathodic arc and glow-discharge 6.1 ± 1.4 

The measured hardness of the TiN/TiO2 coatings deposited on Ti5Al4V substrates by the two 

different methods show similar values, namely 6.3 GPa for the specimen deposited by magnetron 

sputtering and 6.1 GPa for the one deposited by glow-discharge.  

The authors [10] have reported that the application of bias voltage and presence of double phase 

structure of rutile and anatase when considering TiO2 film results in increase the hardness. However, 

the results obtained in the present study can be explained by the nature of the two deposition methods. 

Using magnetron sputtering yields denser coatings than cathodic arc [14]. The denser coatings leads 

greater hardness. In our case, the application of bias voltage during the cathodic arc and glow 

discharge method leads to an increase in density of the atoms near the substrate, hence increase the 

density and change the phase composition (figure 2) of TiO2 film in the coating. The results obtained 

in present study show that the mechanical properties of the deposited TiN/TiO2 coatings depend on the 
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phase composition and on the deposition method. This is the reason that both methods are capable to 

produce coatings with similar hardness. 

 
 

Figure 3. Load displacement curves of multilayer 

TiN/TiO2 deposited by magnetron sputtering 

Figure 4. Load displacement curves of multilayer 

TiN/TiO2 deposited by cathodic arc and glow-

discharge 

4. Conclusions 

The results in the present study show the difference in phase composition of multilayer TiN/TiO2 

coatings on Ti-5Al-4V substrate obtained by two PVD methods, magnetron sputtering and cathodic 

arc and glow-discharge. Magnetron sputtered coatings are monophasic and polycrystalline with 

presence of anatase TiO2, whereas the samples obtained by the cathodic arc and glow-discharge 

method are double-phase and polycrystalline with the presence of anatase and rutile TiO2. 

It is shown that the samples have similar hardness. The coatings obtained by the magnetron 

sputtering method have hardness about 6.3 GPa, while those obtained by the cathodic arc and glow-

discharge method have 6.1 GPa.  
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