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Abstract. Recently, aluminium (Al) alloys are increasingly used in the automobile and 
aerospace industries because of their light weight and corrosion resistance properties. However, 
the applications of these materials are limited due to their poor formability especially at room 
temperature. Although hydroforming technology is one of the approaches used to improve the 
formability of Al alloys, it still cannot fulfil the requirements of designers and manufacturers to 
form high-quality complex shaped components. It has been found that high-speed forming is 
able to improve the formability of low plasticity metals at room temperature. Thus, impact 
hydroforming (IHF) technology is proposed by combining the advantages of high-speed 
forming and hydroforming, and it was used to address the issues of quasi-static hydroforming. 
Accordingly, the aim of this study is to investigate the effect of IHF on the formability of 
AA5A06 sheet metal. An IHF bulge experiment setup was developed by making use of a light 
gas gun which can accelerate the projectile up to 300m/s. The results show that the formability 
of the AA5A06 increased under most of the impact velocities, and the equi-biaxial strain 
before failure of the IHF is 50% higher than that of quasi-static hydroforming at strain rate of 
2×103 s-1. It is concluded that the IHF technology is an appropriate method to improve the 
formability of Al alloys and form complex shape components. 

1.  Introduction 
Hydroforming technology has attracted much attention as an advanced lightweight forming 
technology, due to its advantages in making complex shaped part from light weight alloys such as 
aluminum alloys [1, 2]. Aluminum alloys have become more and more attractive for structural 
applications, known to the aerospace and automotive industries because of their superior properties 
such as low density and good corrosion resistance [3, 4]. The formability of aluminum sheet using 
hydroforming technology is not sufficient to form a product with complicated configurations [5]. 
Warm hydroforming technology can be used to enhance the formability of the aluminum [6], but the 
temperature of the forming process is strictly limited due to the microstructure requirement of the part 
[7]. A few years ago, high speed forming technologies were introduced [8]. The advantages of these 
technologies over a few traditional forming techniques are their ability to improve formability and 
reduce springback [9]. Considering the high speed forming can promote the metal formability, and the 
hydroforming has good surface quality and little geometric characteristic filling ability by adopting the 
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flexible medium, after combining the advantages of the two forming technologies, in this paper, the 
authors propose a novel forming technology named impact hydroforming (IHF). 

Indeed, there are already many researchers in the dynamic field investigate the dynamic responses 
of the sheet or plate subjected to the impulsive loading under water, such as the underwater explosion 
[10, 11] or fluid-structure interactions (FSI) [12, 13]. Most of the previous investigations focused on 
blast energy absorption characteristic of structures, and the material like sandwich plates with foam 
layer is widely used. 

The hydraulic bulge formability of sheet at various strain rates is investigated by many researchers 
in the metal forming field. Broomheas [14] is the first one who used bulge test to investigate the 
influence of strain rate on the strain to fracture of sheet metals. As a result, forming limit curve (FLC) 
of low carbon steel was determined successfully at strain rates of up to 70 s−1. They observed that 
increasing strain rate leads to lowering the forming limits. High strain rate bulge experiments on 6111-
T4 sheets were performed by Grolleau [15] using Split Hopkinson Pressure Bar (SHPB). The 
maximum strain rate was 500 s-1. They calculated the equivalent strain of aluminum 6111-T4 sheets 
by the strain signal but did not compare with experiments value. This method was further refined by 
Ramezani [16] by replacing the fluid to rubber to investigate the AA6005-T6 sheet. The experiments 
results demonstrated that the strain of sheet increased with the impact velocity increasing. The strain 
of 3003 alloy sheet under strain rate range of 200-850 s-1 is investigated by Justusson [17] by a shock 
tube. The ductility and plasticity of 3003 Al-Mn alloy displays obvious improvement at high strain 
rates. Kim [18] modified a high-speed stretch testing by adding special jigs used for high speed 
condition. He found that the FLC obtained from rigid steel punch high-speed bulge experiment is 
lower than that obtained from the static biaxial stretch forming region because the shear fracture 
induces the decrease of ductility of CQ and DP590. 

Unlike previous researches of the dynamic domain, this paper takes the impulsive loading under 
water as a forming technology, and more focused on the dynamic formability of sheet subjected to 
IHF. The current study involves high strain rate (HSR) hydraulic bulge test of the aluminum 5A06 
sheet with different impact velocities. The biaxial strain was obtained and the results are compared 
with the results of the quasi-static (QS) bulge. 

2.  Experiment procedure 

2.1.  Material 
The material used in this investigation was AA5A06-O (Al-Mg alloy) sheet. The chemical 
compositions and microstructure of AA5A06 before testing were depicted in Table 1 and Figure 1. 

Table 1. Nominal chemical compositions of AA5A06 detected by OES. 

Element Mg Mn Fe Si Ti Zn Cu Be 
Percent 6.50 0.54 0.16 0.06 0.06 <0.05 <0.05 0.0005 

 

Figure 1. Microstructure of 5A06-O. Figure 2. Specimen of HSR bulge test. 
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2.2.  The bulge experiment under QS and HSR conditions 
The diameter of the specimens used in this study were 160 mm for the QS bulge experiments. The 
specimens used in HSR were square blanks containing 6 holes with 12 mm diameter distributed at the 
130mm diameter circle as shown in Figure 2. A series of 2.5 mm diameter circles were etched using 
an electrochemical method onto the sheet before testing, and these circles were used to calculate the 
strain. All along forming, the grids were deformed and their circular shapes changed into ellipses with 
the minor and major axes characterizing the direction of principal strains. The values of these principal 
strains at failure can be acquired through calculating the minor and major axes of the ellipses close to 
the fracture site and matching them with the initial diameter of the grids. 

The setup used under QS condition was a conventional set-up for the bulge test as shown in Figure 
3. The sheet was fixed between the binder and the lower die. The clamping force between the binder 
and lower die should be big enough to avoid sliding of the sheet between the dies by a hydraulic press. 
Through the test, the unclamped part of the specimen is forced to deform into the shape of hemisphere 
by constantly growing the pressure of the fluid which causes sheet deformation. The bulged sheet will 
fracture just after the deformation of the material exceeds its forming limit. There was a camera to 
record the deformation time to calculate the strain rate. 

 

Figure 3. QS bulge test setup. 

Figure 4 is the schematic of HSR testing system, the design concept is followed the principle of 
IHF. The projectile was fired out under the high pressure of the light gas gun, the projectile translated 
at high speed. The high-speed camera No. 1 recorded the moving process and this was used to 
calculate the velocity. Then the piston is impacted by the projectile. Then the projectile and piston 
impact the water together to produce high pressure impulse, the sheet will deform when the pressure 
impulse propagate to it. The process duration is very short, so the strain rate of the sheet was very high. 
The high-speed camera No. 2 was used to record the bulge duration, and fracture moment can be 
captured immediately when it happened. Different strain rates are able to be realized by setting the 
releasing pressure of light gas gun. The projectile consist of steel plate and plastic seat with a blind 
hole in it for avoiding the leak of gas during acceleration. Projectile weight 217g, piston weight 282g. 

Figure 4. HSR bulge testing system. Figure 5. Projectile captured by high 
speed camera No. 1. 

The experiments were repeated 3 times for each experimental condition. The QS experiments were 
taken by a hydraulic pump, and the HSR bulge tests were taken under 0.3MPa, 0.4MPa, 0.5MPa, 
1MPa and 2MPa release pressure of the light gas gun. The calculation of the impact velocity of the 
projectile is assisted with the reference plate, the side length of the grid of the back reference plate is 
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10 mm, the capturing speed of high speed camera (No. 1 ) was set to 60000 fps, Figure 5 is one of the 
captured images, the number of the images was counted for going through 10 grids then the speed can 
be calculated out. 

The impact velocities of projectile are listed in Table 2. 

Table 2. Impact velocities of projectile. 

Pressure (MPa) 0.3 0.4 0.5 1 2 
Impact velocity (m/s) 103.92 121.48 134.16 189.74 268.33 

The equal biaxial crack strain was measured as close as possible to the apex by the commercial 
sheet metal forming testing machine BCS-50BR. Due to off-line measurement, only the strain near to 
the crack can be detected, so the strain deviates a little from the absolute equal biaxial path. 

Two etched circles i and j on the same specimen were measured after deformation, both of the 
major and minor strains of circle i should be larger than the corresponding strains of circle j, and the 
strain of the circle i should be closer to the equal biaxial line than circle j which is described as 
Equation (1), then repeat this process until the maximum circle was found for the same specimen. 
Afterwards, the same procedure will be implemented to all of other specimens. 

 ൝
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௜ ൐ ଵߝ
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There are 4 indices used to compare the formability of HSR bulge tests with that of QS bulge tests: 
Effective fracture strain (ߝ)̅ of a circle was calculated according to Equation (2). 

̅ߝ  ൌ
ଵ

ଷ
ඥ2ሾሺߝଵ െ ଶሻଶߝ ൅ ሺߝଶ െ ଷሻଶߝ ൅ ሺߝଷ െ  ଵሻଶሿ (2)ߝ

The increase of the effective strain (∆ߝ%̅) of HSR bulge tests compared with the QS bulge tests 
was defined by Equation (3). 

̅%ߝ∆  ൌ
ఌതౄ౏౎ିఌത్౏

ఌത్౏
% (3) 

The forming time (t) of the quasi-static bulge is about 60 seconds. The forming time (t) of the high 
strain rate test is calculated according to the number of images captured by the fast speed camera No. 
2 and the time interval of 2 images. The capturing speed was set to 100,000 fps, which is 10 μs per 
image. 

For the purposes of this investigation, the effective strain rate (̅ߝሶ) was the ratio of the effective 
strain and the forming time according to the definition as expressed in Equation (4). 

ሶ̅ߝ  ൌ
ఌത

௧
 (4) 

3.  Results and discussion 
All the specimens cracked except the 0.3MPa specimens of HSR bulge tests. The experimental 
specimens are shown in Figure 6, for each condition only one typical specimen was selected. 

The major and minor strain of the biaxial position of the specimens after crack were plotted on 
Figure 7. Only one data point was selected for each specimen according to Equation (1). The data 
points position of 268.33 m/s is similar to that of the QS condition. The specimens of 103.92 m/s 
impact velocity are not cracked, hence data points are positioned lowest, this demonstrated that there 
is a limit velocity required for cracking the specimen. The data points of other impact velocities placed 
higher than that of QS condition, and 121.48 m/s is the optimal impact velocity to get maximum 
biaxial strain. The existing of optimal impact velocity is related to the crack mode. The low impact 
velocity deformation mode is the same to that of QS condition. The specimens will crack to several  
petals at higher impact velocity. The higher of the impact velocity, the more of the number of the 
crack petals, the deformation will be more evenly distributed at higher impact velocities. Therefore 
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there will be one critical impact velocity between the low impact velocity and the high impact velocity 
to get maximum strain. 

Figure 6. Specimens after QS and HSR bulge tests (unit of impact velocity: m/s). 

Figure 7. Equi-biaxial strain of the specimens of 
HSR and QS bulge experiments. 

Figure 8. The 4 indices of the bulge experiment.

The four indices mentioned in 2.2 were plotted on Figure 8. The impact velocity of QS condition 
was seemed as 0. The data comes from two sets of experiments. The error of major or minor strain of 
etched circle is 5% according to the measurement equipment accuracy. Therefore the errors of ߝ ̅and 
 are the same to the error of major and minor strain. The error of forming time of HSR condition ̅%ߝ∆
is 6% according to the capturing speed of the high speed camera No. 1. The maximum error of ̅ߝሶ is 11% 
based on the errors of strain and time. 

Overall, the effective strain declined with velocity increasing for the cracked specimens of HSR 
bulge. So there exists the optimal impact velocity for the impact hydroforming. The maximum 
increase of the effective strain of the optimal impact velocity compared with that of QS bulge is 
62.18%. This proves that the impact hydroforming can increase the formability of aluminum sheet at 
room temperature. The trend of forming time is the same with the trend of effective strain, and it is 
from 100 to 250 µs. The effective strain rate of the QS bulge test is 4.67×10-3 s-1, the effective strain 
rate of non-crack HSR bulge is 608 s-1, and the effective strain rate of other impact velocities are 
ranged 2.33-3.18×103 s-1. And the variation of the strain rate is very limited under the HSR crack ones. 

4.  Conclusions 
The investigation of the present study demonstrated that the impact hydroforming is able to enhance 
the aluminum sheet formability at room temperature. 

The improvement of the effective strain under HSR condition compared with that of QS condition 
is not monotonically increased with the impact velocity increasing due to the crack mode, there exists 
an optimal impact velocity. The maximum increase of the effective strain was 62.18% of the 
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specimens under the impact velocity of 121.48 m/s compared with the QS bulge ones. The effective 
strain rate of HSR bulge are ranged 2.33-3.18×103 s-1. 
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