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Abstract. This article deals with two-equation macroscopic traffic models, which in addition to 
the standard continuity equation (the LWR model), contain an additional differential equation 
expressing the traffic dynamics, specifically the process of speed adaptation to road traffic 
conditions. There are many two-equation models with various forms of the traffic dynamics 
equation with different possibilities to achieve an accurate, stable and effective solution. The 
most popular models have been collected here and presented in a unified matrix form. The 
quality of particular two-equation traffic models, and thus the quality of the results obtained, 
depends on the quality of the model itself, and on the discretization and approximation of the 
problem. In this article, the evaluation of particular models is considered only on a continuous 
level, i.e. at the level of theoretical description of the models. Standard conditioning measures 
such as the spectral radius and the spectral condition number were used for this purpose. The 
results of the estimations have been used to compare particular models as well as to characterize 
two basic classes of models, i.e. isotropic (symmetrical) and anisotropic (asymmetric) models, 
and to evaluate the stability and potential computational efficiency of solutions of these two-
equation models. 

1.  Introduction 
Road traffic models present phenomena and processes of road traffic in the form of mathematical 
relations. These models are usually classified according to the degree of idealization (or level of 
abstraction) of the traffic description, while distinguishing two basic forms, i.e. macroscopic and 
microscopic models. Microscopic (individualized) models are based on the interaction of vehicles 
(drivers) with each other, as well as with the surrounding road infrastructure, while macroscopic 
(aggregated) models do not refer directly to this type of dependency, but describe traffic as a flow of a 
certain (fictional) continuous medium, presented in phenomenological approach, i.e. without delving 
into its discrete (microscopic) structure. In fluid mechanics, this invisible discrete internal structure is 
created by molecules, and respectively, by vehicles in road traffic flow. Further considerations in this 
article refer only to macroscopic models. 

In macroscopic models, the flow of continuous medium is characterised by some specific properties, 
which is usually described in the (differential or integral) calculus, using aggregated quantities 
(variables) such as intensity, density and velocity for this purpose. Due to the continuous model of that 
medium, a direct solution to the compressible flow problem is possible only on the basis of the use of 
mathematical analysis methods. However, this is not a real approach when considering more complex 
road systems. Then the only remaining solution is the discretization of the problem (describing its 
behaviour not in relation to all, infinitely many points of the area, but only to selected points of the 
system defined usually by the computational mesh) and its approximation (expression of the differential 
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operators through the corresponding operations on functions), which in the result leads to the solution 
of a system of algebraic equations (approximating the initial system of differential equations). Such 
approximate solutions are usually achieved using numerical methods which are characterised by high 
computational efficiency (in comparison to analytical methods). 

The quality of the macroscopic traffic models is determined primarily by the adequacy of the 
achieved results, while the quality of the simulation results depends on the accuracy and stability of the 
solution methods and numerical algorithms that were used. This also means that the solution quality is 
determined, of the one part, by the formulations of the model itself, and, of the second part, by the 
discretization and approximation of the problem. In this publication, we will refer only to the first of 
both issues, and thus to the potential ability of the system of model equations to be robust and effective. 

On the macroscopic level, many different models are used to describe the traffic flow, characterised 
by various equation forms with very different possibilities to achieve an accurate, stable and effective 
solution. Obtaining the above mentioned solution features at a satisfactory level depends among others 
on an assessment of model formulations on the theoretical (continuous) level. For such an evaluation, it 
is justified to use standard conditioning measures such as the spectral radius and the spectral condition 
number. 

In the first order, the article collects and presents in a unified form the basic formulations of various 
traffic flow models. On this basis, all matrix coefficients for different traffic flow models are defined. 
Determining the eigenvalues for individual classes and subclasses of models is the basis to define the 
matrix conditioning measures: spectral radiuses and spectral condition numbers. These measures are 
then used to carry out model comparisons, and thus to evaluate the potential computational efficiency 
of macroscopic road traffic models. 

2.  Overview of macroscopic models 
The objective of macroscopic models is to describe as closely as possible all phenomena related to the 
road traffic flow by expressing them through aggregated quantities (i.e. flow rate, density and speed) 
characterizing the traffic flow in isolation from the behaviour of individual vehicles. The process of 
creating and improving traffic models was a long-term process which gradually led to more and more 
perfect mathematical descriptions of traffic flow. The first models referred only to simple traffic 
situations and failed in the case of more complex traffic conditions and road configurations. They were 
called first-order, LWR or single-equation models [1, 2]. The single-equation models proved defective 
because it expressed the local equilibrium conditions in a static manner, i.e. a change in boundary 
conditions immediately resulted in a new equilibrium state, without any evolution between the previous 
and new traffic state, i.e. without reflecting the flow dynamics. 

In order to correct LWR models, two-equation (second-order) models have been developed that 
contain an additional differential equation (equivalent to the momentum equation from fluid dynamics) 
expressing the traffic dynamics, i.e. describing the speed adaptation to current traffic conditions. The 
form of two-equation models has a significant similarity to the description of compressible fluids 
(gases). However, this is not a complete similarity due to: 

 anticipating reaction of drivers in relation to traffic conditions down the road, 
 asymmetry (anisotropy) of the drivers' reactions in relation to the traffic condition down and up 

the road. 
Described drivers' behaviour modifies standard convective interactions, and also takes into account 

diffusive interactions referred to as traffic relaxation, i.e. toning down the tendency to quickly achieve 
an equilibrium state. 

Because traffic model formulations are mainly dependent on convective effects, in further 
considerations on the quality and efficiency of these models, diffusive effects will be omitted, which 
will sometimes result in certain changes in the model descriptions relative to their original formulations. 
Basic traffic models written in such form will be briefly presented in the following paragraphs as specific 
cases of a generalised and unified traffic description. 

The baseline traffic flow model was adopted in the following form: 
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 ൤
𝜕௧𝑘
𝜕௧𝑢

൨ + ቂ
𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ
ቃ ൤

𝜕௫𝑘
𝜕௫𝑢

൨ = ቂ
0
0

ቃ , (1) 

where individual symbols mean: 𝑡 – the time, 𝑥 – the space (the road), 𝑘 – the density, 𝑢 – the speed, 

𝜕ఈ(∙) =
డ(∙)

డఈ
 and (∙)ఉ =

d(∙)

dఉ
 (where 𝛼 is 𝑡 or 𝑥, and 𝛽 – 𝑘 or 𝑢) – (partial and ordinary) differential 

operators. In turn, the quantities 𝑎ଵଵ, 𝑎ଵଶ, 𝑎ଶଵ and 𝑎ଶଶ are certain generalised (at this moment, still 
undefined) traffic parameters of models. 

Two-equation traffic models consist of the flow continuity equation (the LWR model) as a permanent 
element of this system, and the traffic dynamics equation that determines the final form and properties 
of the system. The LWR model has the following standard form:  

 𝜕௧𝑘 + 𝑢𝜕௫𝑘 + 𝑘𝜕௫𝑢 = 0 , (2) 

which causes that in the system of equations (1) 𝑎ଵଵ = 𝑢, and 𝑎ଵଶ = 𝑘, and thus it takes the form  

 ൤
𝜕௧𝑘
𝜕௧𝑢

൨ + ൤
𝑢 𝑘

𝑎ଶଵ 𝑎ଶଶ
൨ ൤

𝜕௫𝑘
𝜕௫𝑢

൨ = ቂ
0
0

ቃ . (3) 

The above, general form of the two-equation macroscopic model is the basis for description and analysis 
of many existing solutions in this field. The individual models will be defined below depending on the 
form of quantities 𝑎ଶଵ and 𝑎ଶଶ.  

Similarly to the continuity equation, the road traffic dynamics equation refers quite clearly to the 
momentum conservation equation, and therefore in its formulation, the quantities and terms 
characteristic for the Navier-Stokes equation occur. Because the diffusive effects (in this publication) 
have been omitted by default, the traffic dynamics equation shows a significant similarity to the Euler 
equation for compressible fluids. For this reason, the concept of pressure 𝑝 was introduced to the traffic 
dynamics description. This pressure characterises the anticipation, and the speed of sound 𝑐଴ is 
understood as the propagation speed of traffic disturbances. The pressure 𝑝 (as a predictive factor) 
depends on the traffic density (and possibly speed), which may have appropriate consequences for the 
speed of sound 𝑐଴. Formally (according to the fluid dynamics), the speed of sound is defined as  

 𝑐଴ = ට
d௣

d௞
≡ ඥ𝑝௞  (4) 

and is one of the important distinguishing features of traffic models, which will be briefly presented 
below.  

The PW (Payne–Whitham) model [3, 4], in the version without diffusive terms, is characterised by 
the following forms of 𝑎ଶଵ and 𝑎ଶଶ (3):  

 𝑎ଶଵ = −
ଵ

ଶఛ
𝑢௞                     𝑎ଶଶ = 𝑢 ,  (5) 

where 𝜏 is the time constant. In the later formulations of the PW model, it is assumed alternatively that  

 𝑎ଶଵ =
ଵ

௞
𝑝௞ =

௖బ
మ

௞
 ,  (6) 

where 𝑐଴ is usually a fixed value. An important disadvantage of the PW models is, among others, their 
instability, especially at high traffic densities.  

The PH (Phillips) model [5] takes additionally into account energy conservation. Its intention was to 
improve shortcomings of the PW models, among others by defining the pressure as a function of density  

 𝑝 = 𝑘𝜃଴ ቀ1 −
௞

௞೘
ቁ ,  (7) 

where 𝜃଴ is a constant (chosen) parameter, and 𝑘௠ is the maximum density. In view of the above, the 
quantity 𝑎ଶଵ now takes the form  
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 𝑎ଶଵ = 𝜃଴ ቀ
ଵ

௞
−

ଶ

௞೘
ቁ ,  (8) 

and the quantity 𝑎ଶଶ remains unchanged (5). Unfortunately, it does not remove the drawbacks of the 
PW model and even causes new ones (such as acceleration at high densities).  

The KK (Kerner–Konhäuser) model [6] is another attempt to improve the PW and PH models. In 
principle, it is based on inserting an additional viscosity to the traffic dynamics equation, which 
undoubtedly improves stability at low and high densities (although not at medium ones), and does not 
remove problems resulting from traffic isotropicity. From the perspective of this publication (neglecting 
the diffusive effects in model descriptions), the KK model does not add anything special to the PW 
model, and in relation to the PH model, it results in a constant sound speed.  

The Z1 (Zhang, version 1) model [7] defines the speed of sound in the form  

 𝑐଴ = 𝑘𝑢௞ ,  (9) 

which is equivalent to the assumption that the expression on pressure is  

 𝑝 =
ଵ

ଷ
𝑘ଷ(𝑢௞)ଶ ,  (10) 

and therefore the quantity 𝑎ଶଵ (3) is respectively  
 𝑎ଶଵ = 𝑘(𝑢௞)ଶ ,  (11) 

whereas the quantity 𝑎ଶଶ preserves the same form as in the PW and other models, mentioned above. The 
Z1 model removes some of the disadvantages of the PW model, because the quantity 𝑎ଶଵ is directly 
proportional to density (and not inversely proportional, as in the PW model). Nevertheless, many 
shortcomings are still relevant.  

The MYL (Michalopoulos–Yi–Lyrintzis) model [8] can be defined using the following characteristic 
quantities:  

 𝑝 =
ణ

ఊାଶ
𝑘ఊାଶ ,  (12) 

 𝑎ଶଵ = 𝜗𝑘ఊ ,  (13) 

where 𝜗 is the anticipation parameter, and 𝛾 – a constant. This model does not use the velocity – density 
relationship, but refers to the free traffic speed. For the appropriate 𝜗 and 𝛾, the MYL model takes the 
form of the Z1 model.  

The AR (Aw–Rascle) model [9] is the first asymmetric (anisotropic) traffic model. This was mainly 
determined by the new form of defining the equation of traffic dynamics:  

 𝜕௧(𝑢 + 𝑝) + 𝑢𝜕௫(𝑢 + 𝑝) = 0 ,  (14) 

but the pressure 𝑝 has been determined differently than in other models. Multiplying the continuity 
equation (2) by (−𝑝௞) and adding it to the traffic equation (14) leads to the standard form of the AR 
model, in which the values 𝑎ଶଵ and 𝑎ଶଶ (3) are respectively: 

 𝑎ଶଵ = 0                    𝑎ଶଶ = 𝑢 − 𝑘𝑝௞ .  (15) 

Aw and Rascle [9] also suggested a pressure expression as  

 𝑝 = 𝑘ఊ     (𝛾 > 0) ,  (16) 

which accordingly modifies the quantity 𝑎ଶଶ to the form  

 𝑎ଶଶ = 𝑢 − 𝛾𝑘ఊ .  (17) 

The advantages of the AR model (in relation to the models presented earlier) are unquestionable, but at 
very low densities, the solution may be unstable.  
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The Z2 (Zhang, version 2) model [10] does not relate the speed of sound 𝑐଴ to the entry 𝑎ଶଵ (3) 
(related to the spatial derivative of density), but to the entry 𝑎ଶଶ (related to the speed derivative). In this 
situation, both these quantities are respectively: 

 𝑎ଶଵ = 0                    𝑎ଶଶ = 𝑢 + 𝑐଴ ,  (18) 

where the speed of sound 𝑐଴ is defined as follows: 

 𝑐଴ = 𝑘𝑢௞      (𝑢௞ < 0) .  (19) 

As can be seen, the models AR and Z2 are very closely related – the difference stems only from the 
determination of derivatives 𝑝௞ and 𝑢௞ respectively on the basis of various equilibrium relations, flow 
– density or speed – density.  

The JWZ (Jiang-Wu-Zhu) model [11], similarly to the Z2 model, describes the anticipation using the 
speed gradient, not the density gradient. As a result, the quantity 𝑎ଶଵ and 𝑎ଶଶ (3) are defined here a bit 
similar to relationships (18), namely: 

 𝑎ଶଵ = 0                    𝑎ଶଶ = 𝑢 − 𝑐଴ .  (20) 

Assuming according to (15) that the speed of sound is 𝑐଴ = 𝑘𝑝௞, then, on this basis, it becomes possible 
to determine the pressure 𝑝 as  

 𝑝 = 𝑐଴ ln 𝑘 .  (21) 

The properties of the JWZ model are similar to the AR and Z2 models.  
The above concise presentation of macroscopic traffic models has been limited to the most popular 

models that formed the basis for further development of their specific variants. Collected and outlined 
(in the above paragraphs) characteristic features of the mathematical description of models and the 
resulting properties of solutions, provide a sufficient basis to compare the conditioning of various 
formulations for particular classes and subclasses of traffic models, and moreover, to assess their quality 
and efficiency resulting only from their formulations on a continuous level. This means that 
discretization and approximation of models will not be taken into account.  

3.  Considerations on the conditioning of traffic models 
Considerations on the conditioning of different formulations of macroscopic road traffic models will be 
carried out first in a general approach, i.e. in relation to the matrix formulation (3), where specific, 
different quantities 𝑎ଶଵ and 𝑎ଶଶ correspond to the formulation of individual traffic models. After 
consideration on the generalised formulation and defining the measures of conditioning for models, 
further considerations will include references to particular classes of traffic models.  

The characteristic polynomial of the general formulation of traffic models (3) has the form  

 ฬ
𝑢 − 𝜆 𝑘
𝑎ଶଵ 𝑎ଶଶ − 𝜆

ฬ = 𝜆ଶ − (𝑢 + 𝑎ଶଶ)𝜆 + 𝑢𝑎ଶଶ − 𝜌𝑎ଶଵ = 0 ,  (22) 

and its solutions to 𝜆 (eigenvalues) are:  

 𝜆ଵ,ଶ =
ଵ

ଶ
ቀ𝑢 + 𝑎ଶଶ ± ඥ(𝑢 − 𝑎ଶଶ)ଶ + 4𝑘𝑎ଶଵቁ .  (23) 

It is extremely important in the context of later considerations to express the values 𝑎ଶଵ and 𝑎ଶଶ as a 
function of eigenvalues 𝜆ଵ and 𝜆ଶ, which can be described by the following relationships:  

 𝑎ଶଵ =
ଵ

ఘ
(𝜆ଵ − 𝑢)(𝑢 − 𝜆ଶ)  (24) 

 𝑎ଶଶ = 𝜆ଵ + 𝜆ଶ − 𝑢 .  (25) 

In order to compare the conditioning of macroscopic traffic models, carried out at the level of 
mathematical formulations, i.e. without taking into account the methods of discretization and 
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approximation of the problem, and without reference to the quality of numerical development and 
computer implementation, the following measures were assumed:  

 the spectral radius,  
 the spectral condition number.  

The spectral radius 𝜌ௌ of the matrix system of model equations is defined by the largest 𝜆 value of 
this system. Thus, it is defined as follows:  

 𝜌ௌ = max (𝜆ଵ, 𝜆ଶ) ,  (26) 

where eigenvalues 𝜆ଵ and 𝜆ଶ are generally defined by relationship (23). If all the considered traffic 
speeds are positive (𝑢 > 0), then the spectral radius is then  

 𝜌ௌ =
ଵ

ଶ
ቀ𝑢 + 𝑎ଶଶ + ඥ(𝑢 − 𝑎ଶଶ)ଶ + 4𝑘𝑎ଶଵቁ .  (27) 

In accordance with the above definition of the 𝜌ௌ radius, it is now possible to refer more specifically 
to traffic models. In order not to analyse all of the models presented earlier, only two main classes of 
traffic models are considered further:  

 symmetrical (isotropic) models, including models: PE, PH, KK, Z1 and MYL, and  
 asymmetric (anisotropic) models, containing models: AR, Z2, and JWZ.  

Isotropic models are characterised by eigenvalues generally referred to as  

 𝜆ଵ = 𝑢 + 𝑐଴                    𝜆ଶ = 𝑢 − 𝑐଴ ,  (28) 

where 𝑐଴ is the speed of sound specific for a given symmetrical model. Insertion of relationships (28) 
into (24) and (25) results in the following expressions on 𝑎ଶଵ and 𝑎ଶଶ:  

 𝑎ଶଵ =
ଵ

௞
𝑐଴

ଶ                    𝑎ଶଶ = 𝑢 .  (29) 

In such a situation, the spectral radius of the symmetric (isotropic) models is always  

 𝜌ௌௌ = 𝑢 + 𝑐଴ ,  (30) 

where individual isotropic models are characterised by their own speeds of sound 𝑐଴. It can therefore be 
concluded that the lower the speed 𝑐଴ for the given isotropic model, the better it is conditioned.  

Anisotropic models assume that the highest wave speed 𝜆ଵ cannot be greater than the driving speed 
– in practice, it is simply assumed that  

 𝜆ଵ = 𝑢 .  (31) 

Inserting the above relationship into (24) and (25) allows defining the quantities 𝑎ଶଵ and 𝑎ଶଶ as  

 𝑎ଶଵ = 0                    𝑎ଶଶ = 𝜆ଶ .  (32) 

This means that the spectral radius of asymmetric (anisotropic) models is in such a situation  

 𝜌ௌ஺ = 𝑢 ,  (33) 

and thereby it is equal for all anisotropic models, and therefore the conditioning of these models is the 
same.  

The condition number 𝜅 of the coefficient matrix of the system of equations is defined in general as 
the product of the matrix norm and the inverse matrix norm, which indicates the dependence of the 
condition number on the adopted matrix norm. If all of the eigenvalues of the matrix are real, then for 
the induced matrix norm ‖⋅‖ଶ, the condition number assumes the general form  

 𝜅 =
|ఒ೘ೌೣ|

|ఒ೘೔೙|
  (34) 
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and is referred to as the spectral condition number. In respect of studied systems of equations having 
two eigenvalues, where also the traffic speeds are positive (𝑢 > 0), the spectral condition number can 
be defined as  

 𝜅 = max ቀ
|ఒభ|

|ఒమ|
,

|ఒమ|

|ఒభ|
ቁ =

ఒభ

|ఒమ|
  (35) 

or, after considering the relationship (23), as  

 𝜅 =
௨ା௔మమାඥ(௨ି௔మమ)మାସ௞௔మభ

ቚ௨ା௔మమିඥ(௨ି௔మమ)మାସ௞௔మభቚ
 .  (36) 

In respect of symmetric (isotropic) models characterised by the eigenvalues (28), and therefore also 
relationships (29), the condition number is  

 𝜅ௌ =
௨ା௖బ

|௨ି௖బ|
 ,  (37) 

where the speed of sound 𝑐଴ is characteristic for a specific model. This means that the smaller the speed 
𝑐଴ related to the specific isotropic model, the better it is conditioned.  

In the case of asymmetric (anisotropic) models, where the highest wave speed corresponds to the 
traffic speed (31), and consequently also the relationships (32) are relevant, the condition number is  

 𝜅஺ =
௨

|௔మమ|
 .  (38) 

Since in general the quantity 𝑎ଶଶ for the positive 𝑐଴ is described by the relationship (20), and for the 
negative 𝑐଴ – by (18), then assuming the speed of sound 𝑐଴ as a positive value, the condition number is 
determined as follows:  

 𝜅஺ =
௨

|௨ି௖బ|
 .  (39) 

It follows clearly that anisotropic models characterised by a lower velocity 𝑐଴ are better conditioned 
than models with a higher speed of sound. 

4.  Conclusions 
Conditioning measures determined for various macroscopic traffic models, were the basis for the 
following assessments and conclusions:  

1. The spectral radius of symmetric (isotropic) traffic models (30) depends on the propagation 
speed of traffic disturbances (the speed of sound). The smaller it is, the better conditioned the 
model is.  

2. The spectral radius of asymmetric (anisotropic) traffic models (33) is equal for all models, so 
their conditioning is identical.  

3. All anisotropic traffic models are better conditioned (in terms of spectral radiuses) than isotropic 
models.  

4. The condition number for symmetric traffic models (37) depends on the speed of sound - the 
higher it is, the worse the conditioning is.  

5. The condition number for asymmetric traffic models (39) also depends on the speed of sound; 
however, this relationship is different than for the isotropic models. Nevertheless, the principle 
still applies that increasing the speed of sound worsens the conditioning.  

6. All anisotropic traffic models are characterised by a better conditioning (in terms of the 
condition numbers) than isotropic models.  

7. In terms of the level of conditioning, it is possible to compare not only classes or subclasses of 
macroscopic traffic models, but also any individual traffic models. However, it should be 
remembered (especially when assessing according to the condition number) that model 
conditioning may change with the change in the ratio of the speed of sound to the speed of traffic 
(or vice versa, the speed of traffic to the speed of sound).  
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