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Abstract. All Network intrusion detection is designed for detecting, preventing, and repelling 

network security breaches and it has become an urgent issue. Maintaining a safe and secure 

network requires an efficient and flexible solution called an intrusion detection system. This 

paper reports an advanced intrusion detection method created with a deep learning approach. 

Evolutionary operators can reduce the probability of stagnation in local solutions due to high 

local optima avoidance and have thus superseded conventional training algorithms, such as 

back propagation (BP). Combining a deep neural network (DNN) and an evolutionary 

algorithm (EA) may solve problems or outperform DNN in solving existing problems. We 

develop a hybrid training method that combines simulated annealing (SA) and BP to improve 

the performance of DNN (SABP-DNN). The NSL-KDD dataset is used to verify the accuracy 

and efficiency of the proposed method. The proposed method is also compared with the 

original DNN based on PB (PB-DNN) and DNN based on SA (SA-DNN). We confirm that the 

proposed method presents a strong potential to become an alternative solution to IDS through 

experiments and comparisons with existing methods. 

1. Introduction 

The increase in the number of local networks has led to continuous evolution of Internet data and the 

availability of massive amounts of network data has promoted the development of information 

technology, which requires careful attention. Consequently, this evolution, in turn, has increased the 

vulnerability of systems to various threats [1]. Any intrusion can have disastrous consequences. For 

example, personal data can be destroyed, corrupted, or illegally accessed as a result of confidentiality 

breaches. Furthermore, integrity breaches can lead to the alteration of personal data. Computer 

network security has become a promising tool to provide secure channels. One of the promising tools 

that can detect attacks is the intrusion detection system (IDS). Cybersecurity infrastructures employ 

IDS as an essential component and use it to protect systems and infrastructures from various threats. 

 IDS is a permanent monitoring scheme applied in computer or network systems to monitor targeted 

systems, collect audit data, analyze the gathered information to determine unusual activities and 

establish response plans [2]. IDS should either model any type of attacks or anomalous events that can 

affect the network under consideration (signature based) or build a general model that describes 

normal traffic (anomaly based). 

http://creativecommons.org/licenses/by/3.0
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 Network IDS comprises a set of single-purpose sensors or host computers that are positioned at 

different points in a network or interconnected set of networks to monitor transmitted traffic. These 

units examine network traffic packets in real time, perform local analysis for a captured packet, and 

finally take action, such administrator notification [3]. NIDS involves two major detection techniques, 

namely, misuse-based detection and anomaly-based detection [4]. Misuse detection systems, such as 

works in [5, 6], define the behavior of an intruder and scan predetermined attack data to match 

signatures. Anomaly detection systems, such as works in [5, 7], set only normal (typical) or expected 

behavior and flag any deviation from this behavior. However, these two detection systems possess 

weaknesses. Misuse detection systems cannot detect new forms of attack because their signatures are 

not yet available for pattern matching. Anomaly detection systems produce a high false alarm rate 

when adopted in most existing approaches because building practical normal behavior to protect 

targeted systems is difficult [8]. 

 Many techniques have been utilized to enhance the performance of IDS. However, security experts 

still strive to achieve IDS with improved performance, the highest detection rate and the lowest false 

alarm rate. Machine learning has been impeccably accomplished in many areas of computer science, 

such as speech, visual and face detection, but not sufficient in intrusion detection [3]. 

 Recently, developed techniques have elicited considerable attention in the search for a solution to 

accommodate concerns regarding intrusion detection. These techniques include artificial neural 

networks [5], evolutionary algorithms (e.g., genetic algorithm (GA) [9], particle swarm optimization 

(PSO) [10], and ant colony optimization (ACO) [11]) and deep learning approaches (e.g., deep neural 

network (DNN), restricted Boltzman machine, deep Boltzman machine, and convolutional neural 

network (CNN)) [12]. The present study is focused on two of these methods: deep neural network 

(DNN) and simulated annealing (SA). 

 DNN and SA have not been sufficiently explored in literature. Furthermore, we selected these 

methods due to the fact that DNN employs consecutive layers of information processing stages in a 

hierarchical manner for pattern classification and feature or representation learning [10]. Moreover, 

weight learning tasks are considered essential in the application of DNN. In other hand, SA has shown 

good performance in solving continuous optimization problems due to the search mechanisms used in 

its mutation operators [13]. Thus, a natural question arises: can we benefit from the advantages of SA 

techniques in overcoming the training phase of DNN by injecting search strategies of SA into the 

training operator of DNN algorithms? 

 Although DNN can solve various learning tasks, it is difficult to train [14]. Deep-learning 

algorithms, which inspired by the neurons that make up the human brain, have gained numerous 

attention in scientific community due to their successful application in area. Recently proposed 

optimization techniques for training DL use layer-wise pre-training. DNN training requires powerful 

optimization techniques. Therefore, several conventional algorithms, such as BP, are used to solve this 

issue. However, the BP algorithm is sometimes susceptible to convergence into local optima because it 

is used as a local search method in which the final solution depends strongly on the initial weights [8]. 

The SA algorithm has been used to solve the global optimization problem. The primary advantage of 

SA over other methods is its capability to avoid local minima [15]. The algorithm functions by 

selecting the neighbourhood solution within a search space, accepting the worse solution, and moving 

to inferior solutions to escape entrapment (i.e., local optimal solution). Thus, the efficiency and 

robustness of the SA algorithm have been verified through the solution of numerical optimization 

samples. 

 We developed a new hybrid algorithm called SABP-DNN that combines SA and BP to build an 

advanced training algorithm for DNN. The proposed algorithm was applied to detect intrusion in the 

NSL-KDD dataset. This work exploited the local search capability of BP and the global search 

capability of SA. We injected SA into DNN to facilitate training and improve the detection rate. 

Consequently, combining SA with BP can reinforce the strengths of the two methods because of their 

computational advantages and can thus reduce the computational time of the training phase. The well-
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known intrusion detection dataset (NSL-KDD) was used to test the performance of the proposed 

method. The main contributions of this study can be summarized as follows: 

 An intrusion detection model based on DNN-trained SA combined with BP was presented and 

proven feasible its usefulness, as evidenced by the increased detection rate for NSL-KDD data. 

 The principles of SA were examined to optimize the DNN weight and determine its 

effectiveness in the IDS field. 

 The efficiency of DNN was evaluated by using the NSL-KDD dataset. The SABP-DNN model 

outperformed SA-DNN and BP-DNN in the detection task. 

 The proposed SABP-DNN was compared with other techniques by using the NSL-KDD dataset 

to confirm the applicability of the proposed approach. 

The rest of this paper is structured as follows: Sections 2 provide a brief introduction to the 

concepts of ANN and outline the mathematical overview of the DNN and SA, respectively. Section 3 

and Section 4 discusses the use of SA combined with BP in DNN training. Section 5 discusses an 

overview of the architecture of the proposed IDS. Section 6 presents the experimental setup and results. 

Section 7 summarizes the conclusions and directions for future work. 

2. Background 

2.1. Deep neural network 

The term DNN can have several meanings, deep is usually related to the hidden layers contained in a 

neural network and formally defined as a learning model with many layers of nonlinear 

transformations. Deep learning is one of the newest techniques of machine learning, it allows 

computers to acquire human brain abilities in natural functionality such as learning using examples. A 

DNN is comprised of a collection of advanced deep connected neurons listed in a distinctly layered 

topology, namely, an input layer, one or multiple hidden layers, and a single output layer [16]. In DNN, 

which is one of the mainstream deep learning methods, data moves forward these artificial deep 

neurons from the input units, through the hidden units which processes an aspect of the data, and 

eventually reaching the output units. The sample DNN includes of three hidden layers, one input layer, 

and one output layer for a global of five layers. DNNs are typically trained by updating and adjusting 

neurons weights and biases through the use of the supervised learning BP algorithm [14]. Each node in 

layer performs a specific calculation, which is defined as: 

 { }   ( { })    (∑ {     } { {  }
{ }
    

{ }
    

{ }
})                         (1) 

Where z
l
 ∈ R

Nl is the stimulation vector, v
l
 is is the activation vector, wij ∈ R

Nl *Nl the connection weight 

matrix, and βi ∈ R
N 

is the threshold ( or bias) vector. N ∈ R
Nl*Nl is the number neurons at layer l. f() : R

Nl 

→ R
Nl is the activation function applied to the stimulation vector element wise. In most applications, 

the sigmoid function and the hyperbolic tangent function is the most used as activation function for 

ANN. Rectified Linear Unit function is popular activation functions for DNN. 

2.2. Simulated Annealing Algorithm 

SA is a generic probabilistic meta-heuristic for complex system optimization. SA was first proposed 

by Kirkpatrick et al. [17] in 1983. The SA algorithm simulates the annealing process in metallurgy. 

Annealing is a technique that involves heating a solid to the highest level and controlling cooling until 

the energy state of internal atoms is reduced to a minimum and crystal growth has initiated.   

 Here, we present a general outline of the algorithm. First, a random solution is generated and then 

the cost is calculated using one of the defined functions. A random neighbor solution is generated and 

the cost of the neighbor solution is calculated. The following comparisons are established: If the cost 

of the neighbor solution is ‘smaller’ than the cost of the current solution, then the new solution is 

accepted. If the cost of the neighbor solution is ‘larger’ than the cost of the current solution, then 
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‘maybe’ the new solution is accepted. Nevertheless, it may be accepted after checking the Boltzmann 

probability factor: 

 ( )   
   ( )

   ⁄
                                              (2) 

 

where f(x) is the energy function, k is Boltzmann’s constant, and T is temperature [13]. The steps are 

repeated until the algorithm reaches an acceptable solution or the maximum allowable iteration. 

3. Design of proposed training method 

The training process aims to generate a convenient network approach for the corresponding incoming 

input, and this procedure is achieved through an iterative learning process. The learning process can be 

considered as a modification of the randomly generated neural network weights based on the neural 

network response to a set of training input patterns. Therefore, DNN training can be interpreted as 

constructing a predictive model (function) and optimizing it in an n-dimensional space. This 

optimization problem can be solved by SA, which is a stochastic global optimization method suitable 

for nonlinear function optimization. 

 The design of the proposed method uses DNN: -input layer one hidden layer with 10 neurons -one 

hidden layer with 20 neurons -one hidden layer with 10 neurons -output layer. The most important 

step in DNN training is the use of SA, which is a problem caused by the optimal combination of 

connection weight values between DNN and SA. The problem of training DNN should be approached 

suitably for the SA algorithm. 

 The main goals of using SA to train DNN are to optimize weight complexity, minimize 

approximation error, and achieve the required accuracy. These purposes can be accomplished through 

a cost-based process by computing the cost value of each vector solution. The optimal solutions with 

minimal cost value are selected. The solution vector is represented using values ranging from -1 to 1, 

and the number of features in each solution vector is computed as follows: 

        (     )  (    )                                         (3) 

where nh, ni are the number of hidden neurons and input features, respectively. 

 In this study, the cost function refers to the representation and measures of the represented solution 

that used in the optimization algorithm. Cost function evaluates the efficiency of a single solution in a 

population or the chance of finding a solution and reaching high coverage. The optimization process 

terminates when the termination criterion is satisfied, which is the allowable number of iterations or a 

satisfactory cost level, has been achieved. One of the cost functions is adopted in this study is as 

follows: 

    
 

 
 ∑     

                                                      (4) 

where o is the desired output, y is the actual output, and R is the number of training samples. 

Optimization can be terminated on the basis of two situations: First, the maximum allowable iteration 

is reached. Second, the cost function threshold is attained. Consequently, the optimal state of network 

has been achieved.  

4. Improved training DNN with SA and BP 
The improved training algorithm combines SA with BP; therefore the fundamental idea behind this 

hybrid algorithm is to exploit the global search capability of SA and the local search capability of BP. 

SA has a strong exploration capability for finding a global optimal solution, which means that SA has 

stable capabilities in global convergence but arrives at the global optimum. Thus, its search process 

slows down. By contrast, the BP algorithm can determine whether the global optimal solution is weak 

or strong in finding a locally optimal solution. Thus, the BP algorithm is capable of attaining rapid 

convergence around the global optimum for finding the local optimum. 
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 The main principle behind combining SA with BP is as follows: SA is used to explore the global 

optimum during the initial stage of optimum searching, and BP is used to search around the global 

optimum to find the best local optimum. 

 A collection of random solutions is generated to initiate searching process and training. SA 

compares each network fitness value during each pass through a dataset. The solution with the optimal 

cost value is considered as the global best optimum. The BP algorithm then exploits the global best 

optimum to search for the local best optimum. The general training pseudo-code of SABP-DNN is 

presented in Algorithm 1.  

Algorithm 1 Combining SA with BP training DNN pseudo code 

1: Initialize training parameters: lb, ub, K, n. 

2: Creating a set of random solutions X = x1,x2,,,xn in range of [ub,lb]. 

3: for each solution do do 

4: Calculate the MSE f(X) for solutions via equation 4. 

5: if f(x) < fbest then 

6: fbest = f(x) 

7: end if 

8: end for 

9: Until (minimum T or K=0) 

10: for each solution do 

11: Use the BP algorithm to calculate a new solution x0. 

12: Calculate the MSE of f(x),f(x0). 

13: if f(x0) < f(x) then 

14: fbest = f(x0),x = x0 

15: else 

16: Calculate the difference ∆f = f(x0) − f(x) 

17: Random value r(0 , 1) 

18: if r > e−∆f/kT then 

19: fbest = f(x0),x = x0 

20: else 

21:  fbest = f(x)  

22: end if 

23: f = fbest 

24: Reduce the temperature gradually T = α   T 

25: end if 

26: end for 

27: Save the best solution with fbest 

28: Go to step 9 if the end criterion is not satisfied. 

5. OVERVIEW OF PROPOSED MODEL 

As shown in Figure 1, the architecture of our proposed IDS mainly consists of three components: The 

data input module and two basic modules, which comprise the DNN network and SA module.  

 Figure 1 shows that the data are not directly fed to the DNN module. The data must be pre-

processed by normalizing, filtering, and extracting features from the NSL-KDD dataset [18]. The 

training and testing dataset will be provided as the input to the next phase for various processes by the 

DNN module. 

In this study, the framework of the proposed system is based on the two stages of network training 

and detection. The DNN training stage uses the SA algorithm such that network weights are treated as 

solutions that have evolved in the SA algorithm. Once the evolutionary process of finding a suitable 

solution for DNN is completed, a selected solution representing a set of weights, which are regarded as 

the optimal weights, is achieved. The evolution process stops when termination is satisfied. 

 Finally, in the detection stage, the testing data are loaded into predicted models to predict whether 

the output exhibits normal or abnormal behavior. The detection stage uses the model established 

during the training stage to map the predicted output with the matched classes. 
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Figure 1. Framework of the proposed IDS. 

6. EXPERIMENTAL SETUP AND RESULTS 

6.1. NSL-KDD DATASET  

NSL-KDD was developed in a suitable form by decreasing redundant instances that influence the 

evaluation of IDS results [19]. NSL-KDD, which is constructed from records selected from the whole 

KDDCup99 dataset, addresses many issues related to the KDDCup99 dataset by eliminating all 

duplicate and redundant instances in the whole dataset.  

 The NSL-KDD dataset includes the same features as the KDDCup99. Each NSL-KDD instance has 

41 features that are labelled as either normal or an attack, with one specific attack type [1]. The whole 

set is grouped into training and test sets whose attack instances are classified into four major classes, 

i.e., DoS, U2R, R2L, and Probe, in accordance with purpose. Table 1 shows the distribution of the 

records in the NSL-KDD dataset for the training and testing sets.  

Table 1. Distribution of records in the NSL-KDD dataset. 

 Normal Attack Total 

Training set 13449 11743 25192 

Testing set 9714 12830 22544 

6.2. Evaluation Metrics 

This proposed approach was implemented and evaluated in Visual Basic 2010 on a personal PC with 

Core I5 2.4 GHz CPU and 4 GB RAM. This study does not focus on setting parameter values. 

Nevertheless, the selection of these parameters remains an open question. The performance of the 

proposed models is highly dependent on the proper setting of DNN and SA parameters. All feature 

records in the experiment were represented at the same predefined boundary [0, 1]. Min-max 

normalization is the most popular method to fit data in the same boundaries. The performance of the 

proposed model is assessed via four main parameters: recall (R), precision (P), accuracy (ACC), and 

F-measure (F). The result of the proposed model requires a high R, high ACC, and low false-alarm 

rate [2]. 

6.3. Experimental Results 

The performance of the proposed DNN-based IDS was evaluated through a series of experiments. 

Two experiments were designed to study the performance of the DNN-IDS model for binary 

classification (normal, anomalous) and compare it with other existing approaches using deep learning. 
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 Minimum and maximum MSE and accuracy were evaluated from all the simulations. Initially, the 

performance of the model depended on the value of the hyper-parameter initiated. 

 The first phase of our experiment was performed with the NSL-KDD dataset. Here, 20% of the 

whole NSL-KDD training dataset was used because these datasets have a large number of records that 

may require a long computation time with ordinary CPUs and machines or may exceed memory 

requirements. The training stage was completed with the selected training dataset. On the other hand, 

the size of the randomly selected testing set is only 80% of the whole NSL-KDD testing dataset. 

 Firstly, the Learners (BP) were tuned by selecting the hyper-parameters necessary to improve 

performance. Moreover, we attempted to tune BP-DNN by finding the optimal learning rate within the 

range of 0.6 to 0.02. We minimized MSE and maximized accuracy when training a model. Table 2 

shows MSE of BP-DNN methods during training with NSL-KDD training dataset and the result of the 

testing with NSL-KDD testing dataset where MSE and training time are taken as performance 

evaluation factor. Table 3 shows performance of BP-DNN in terms of ACC, RECALL, PRECISION, 

FPR and F-measure. 

Table 2. Results of the experiment based on MSE for BP-DNN. 

Learning rate Training set Testing set 

 MSE  Time MSE Accuracy 

 MIN MAX    

0.6 0,80628 0.96472 25960 0.51880 52.30 

0.5 0.16171 0.96472 27278 0.23939 87.51 

0.4 0.82659 0.96472 29686 0.50701 47.69 

0.3 0.20567 0.96472 27478 0.21357 88.16 

0.2 0.11717 0.96472 27329 0.22201 88.94 

0.1 0.04025 0.96472 27683 0.12703 92.68 

0.08 0.05152 0.96472 26586 0.12372 92.78 

0.06 0.03015 0.96472 29153 0.15449 92.00 

0.04 0.02786 0.96472 27877 0.16073 91.51 

0.02 0.02224 0.96472 28570 0.15430 90.80 

 

Table 3. Experimental results of BP-DNN for NSL-KDD. 

Metric  ACC DR=RECALL PRECISION FPR F-measure 

results 92.78 85.78 79.41  0.020 91.32 

 

 Secondly, the Learners (SA) were tuned by selecting the hyper-parameters necessary to improve 

performance. Moreover, we optimized SA-DNN by finding the proper value of Alpha (α) within the 

range of 0.9 to 0.1. We minimized MSE and maximized accuracy when training a model. Table 4 

shows the MSE of SA-DNN methods during training with the NSL-KDD training dataset and the 

result of the testing with the NSL-KDD testing dataset, where MSE and training time are regarded as 

performance evaluation factors. Table 5 shows performance of BP-DNN in terms of ACC, RECALL, 

PRECISION, FPR and F-measure. 

 Table 2 shows that in the training phase, a low learning rate was followed by a decrease in MSE 

and an increase in ACC. However, in the testing phase, when we reduced the learning rate to 0.009, 

the results of each change were matched by a change in MSE and accuracy. Therefore, all of the 

resulting changes were not as good as the learning rate of 0.08. Table 5 shows that the changing of (α) 

value leads to the changing of MSE and ACC values. Alpha decreases from 0.7 to 0.3 where MSE 

reaches its minimal value. Consequently, ACC achieves good result when MSE is minimal. 
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Table 4. Results of the experiment based on MSE for SA-DNN. 

Alpha Training set Testing set 

 MSE  Time MSE Accuracy 

 MIN MAX    

0,9 0.27312 0.85425 24667 0.27958 84.57 

0.8 0.22926 0.85425 27278 0.22541 86.88 

0.7 0.23744 0.85425 25229 0.32475 82.05 

0.6 0.22063 0.85425 24798 0.28204 70.46 

0.5 0.21523 0.85425 25109 0.32514 82.08 

0.4 0.19672 0.85425 23413 0.19908 87.96 

0.3 0.16918 0.85425 23388 0.18335 93.10 

0.2 0.17396 0.85425 24736 0.22996 89.76 

0.1 0.27549 0.85425 24429 0.27973 85.05 

 

Table 5. Experimental results of SA-DNN for NSL-KDD. 

Metric ACC DR=RECALL PRECISION FPR F-measure 

results 93.10 88.00 97.25 0.022 92.17 

 

 Comparison of the results of the training and testing phases related to the proposed approach 

showed that SA-DNN achieved acceptable performance in terms of ACC (93.10), RECALL (88.00) 

and time of training compared with BP-DNN. BP-DNN performed better than SA-DNN in terms of 

PRECISION (97.41) and FPR (0.020). However, determining which method performs better by using 

ACC, RECALL, PRECISION, and FPR is impossible because all the results are close. The metric of 

F-measure provides a better measure of the accuracy of a model compared with all of the metrics 

because both of precision (P) and recall (R) are considered for calculating F-measure. The goal is to 

achieve a high F value to provide accurate results, which means all instances are classified correctly. 

SA-DNN obtained (92.17) better results than BP-DNN (91.32). Therefore, SA provides accurate 

results. For the overall evaluation, the learning rate of 0.08 and alpha of 0.3 of BP-DNN and SA-DNN, 

respectively, reveal that these two methods showed the best performance. Thus, they were selected for 

further evaluation. 

 Although the results of BP-DNN and SA-DNN were not good enough, we evaluated the result of 

the SABP-DNN model based on the two to show the performance of the proposed model. The 

performance of the SABP-DNN algorithm was evaluated using the best parameter found in the two 

previous experiments. Table 6 shows the MSE of the model with 0.08 learning rate and 0.3 alpha. 

Table 7 shows performance of SABP-DNN based on ACC, RECALL, PRECISION, FPR and F-

measure. 

 Table 6 shows that the result of SABP-DNN in terms of MSE was 0.03356 in 21842 ms. this result 

shows an improvement compared with SA-DNN and BPDNN, which obtained 0.05152 in 26586 ms 

and 0.16918 in 23388 ms, respectively. 

Table 6. Results of the experiment based on MSE for SABP-DNN. 

Learning rate / alpha Training set Testing set 

 MSE  Time MSE Accuracy 

 MIN MAX    

0.08 / 0.3 0,03356 0.08539 21840 0.08097 95.56 
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Table 7. Experimental results of SABP-DNN for NSL-KDD. 

Metric  ACC DR=RECALL PRECISION FPR F-measure 

results 95.56 91.88 98.73  0.010 94.17 

 

 Table 7 also shows an improvement in the results in terms of ACC, RECALL, PRECISION, FPR, 

and F-measure, which gained values of 95.56, 91.88, 98.73, 0.010, and 94.17, respectively.  

Table 8 shows that our SABP-DNN approach performed better than the existing approaches. 

Author/reference Technique Accuracy (%) DR (%) FAR (%) 

[7] (2016) ANN 95.04 - 1.48 

 LR 92.75 - 18.84 

 NB 95.00 - 5 

[11] (2014) SVM - 66.70 5.53 

 CSOACN - 80.10 2.84 

 CSOAC - 78.18 2.77 

[18] (2012) SSOWLS 93.30 - - 

 SSO 89.60 - - 

 PSO 88.50 - - 

[4] (2015) DNN 75.75 76.00 0.86 

[17] (2016) ADBCC 92.71 91.79 3.50 

[8] (2017) GSPSO-ANN 95.26 - - 

 PSO-ANN 92.06 - - 

 GS-ANN 92.81 - - 

In this work(2018) SABP-DNN 95.65 91.88 0.01 

     

 Overall, the SA algorithm is highly recommended for use in intelligent hybrid optimization 

schemes, such as hybridization with BP, for finding optimal DNN weights. This recommendation is 

based on the high exploratory behavior of the algorithm, which prevents finding the local optima 

through training DNNs. The SA algorithm employs a random neighbor search, which allows changes 

in acceptance probability to minimize loss function and inferior solutions to escape obtaining the local 

optima. The highly exploitative behavior of the algorithm is another reason for the rapid convergence 

of an SA-based trainer toward the global optimum for different datasets. Meanwhile, the BP algorithm 

can determine if the global optimal solution is weak and finds a locally optimal solution. Moreover, 

the BP algorithm can attain rapid convergence around the global optimum for finding the local 

optimum. Combining SA with BP can reinforce the strengths of each method because of their 

computational advantages and can reduce the computational time of DNN training. 

7. Conclusion 

This study demonstrated that the deep learning method of DNN can be successfully applied in 

intrusion detection. This deep learning model learns high-dimensional representations and efficiently 

performs attacks detection. SA can be combined with BP to train and adjust a DNN and to learn 

similarity representation over nonlinear and high-dimensional input data. Doing so can perfectly 

facilitate attack detection. In the IDS environment, the deep learning approach can be used to 

successfully develop an advanced detection model for detecting potential attacks. The main advantage 

of combining SA with BP is the use of distinct patterns to explicitly avoid being trapped in the local 

minima. Hence, many of the issues of premature convergence can be prevented, and good data 

generalization can be achieved. 

Table 8. Performance of our proposed method SABP-DNN compared to other 

methods for KDD99 dataset. 
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 Experiments on the NSL-KDD dataset showed that our proposed approach, SABP-DNN, 

effectively trains DNN compared with BP-DNN and SA-DNN training methods. The statistical results 

showed that SABPDNN is robust because the variance values are small. The experimental results for 

the NSL-KDD dataset showed that DNN can learn a good generative model and performs well in 

intrusion detection. Deep learning approaches provide new design ideas and methods for future IDS 

research. The results of this study prove the potential applicability of DNN as an alternative solution 

for developing practical IDSs. 
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