
IOP Conference Series: Materials
Science and Engineering

PAPER • OPEN ACCESS

New Improved Training for Deep Neural Networks
Based on Intrusion Detection System
To cite this article: Ilyas Benmessahel et al 2018 IOP Conf. Ser.: Mater. Sci. Eng. 435 012034

View the article online for updates and enhancements.

You may also like
Fast and accurate robotic optical detection
of exfoliated graphene and hexagonal
boron nitride by deep neural networks
Young Jae Shin, Wheemyung Shin,
Takashi Taniguchi et al.

-

Improving robustness of a deep learning-
based lung-nodule classification model of
CT images with respect to image noise
Yin Gao, Jennifer Xiong, Chenyang Shen
et al.

-

Interbeat interval-based sleep staging:
work in progress toward real-time
implementation
Gary Garcia-Molina and Jiewei Jiang

-

This content was downloaded from IP address 3.145.152.98 on 30/04/2024 at 16:49

https://doi.org/10.1088/1757-899X/435/1/012034
https://iopscience.iop.org/article/10.1088/2053-1583/abd72c
https://iopscience.iop.org/article/10.1088/2053-1583/abd72c
https://iopscience.iop.org/article/10.1088/2053-1583/abd72c
https://iopscience.iop.org/article/10.1088/1361-6560/ac3d16
https://iopscience.iop.org/article/10.1088/1361-6560/ac3d16
https://iopscience.iop.org/article/10.1088/1361-6560/ac3d16
https://iopscience.iop.org/article/10.1088/1361-6579/ac5a78
https://iopscience.iop.org/article/10.1088/1361-6579/ac5a78
https://iopscience.iop.org/article/10.1088/1361-6579/ac5a78
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjstU4bk2G4AfIJt8-jGNQbkoni4DLrhd8IzFXOAbSSYJQwK_pKzXar8Y8KmSsaoj8vjHPzt2eZJn10Kazs7MBjWwSMdQSy79PIUAQ6M3JF28Uco5h1K4n7mTReSQ_uy8rxR-eASPW7KgvelYX9GVRFM-xR7cQ8x2Yr-8HxQsycHCVdhnf233gvW_5BYrQQoLku5pOYJ1j351pMrCkYNiCReKB7RWvP8gRw6IwnNALN0g_3zO1z3k5zK5jY-v1PNRIWcRzWSopr3Y8wTGmsmqG0CQIndttecmCfRuy0LFCJm9XCt1uPXYo4rwK1z5I9O8xnteEJaRwUz24nOFMgrp1_s7DCeY6w&sig=Cg0ArKJSzIFk54RdDosX&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890‘’“”

AIAAT 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 435 (2018) 012034 doi:10.1088/1757-899X/435/1/012034

New Improved Training for Deep Neural Networks Based on

Intrusion Detection System

Ilyas Benmessahel
1, a,*,

, Kun Xie
1,b

 and Mouna Chellal
2, c

1
College of Computer Science and Electronics Engineering, Hunan University,

Changsha, China.
2
School of Information Science and Engineering, Central South University, Changsha,

China.

a
 * ilyasbenms@hnu.edu.cn;

b
kunxie@hun.edu.cn;

c
mounachellal@gmail.com

Abstract. All Network intrusion detection is designed for detecting, preventing, and repelling

network security breaches and it has become an urgent issue. Maintaining a safe and secure

network requires an efficient and flexible solution called an intrusion detection system. This

paper reports an advanced intrusion detection method created with a deep learning approach.

Evolutionary operators can reduce the probability of stagnation in local solutions due to high

local optima avoidance and have thus superseded conventional training algorithms, such as

back propagation (BP). Combining a deep neural network (DNN) and an evolutionary

algorithm (EA) may solve problems or outperform DNN in solving existing problems. We

develop a hybrid training method that combines simulated annealing (SA) and BP to improve

the performance of DNN (SABP-DNN). The NSL-KDD dataset is used to verify the accuracy

and efficiency of the proposed method. The proposed method is also compared with the

original DNN based on PB (PB-DNN) and DNN based on SA (SA-DNN). We confirm that the

proposed method presents a strong potential to become an alternative solution to IDS through

experiments and comparisons with existing methods.

1. Introduction

The increase in the number of local networks has led to continuous evolution of Internet data and the

availability of massive amounts of network data has promoted the development of information

technology, which requires careful attention. Consequently, this evolution, in turn, has increased the

vulnerability of systems to various threats [1]. Any intrusion can have disastrous consequences. For

example, personal data can be destroyed, corrupted, or illegally accessed as a result of confidentiality

breaches. Furthermore, integrity breaches can lead to the alteration of personal data. Computer

network security has become a promising tool to provide secure channels. One of the promising tools

that can detect attacks is the intrusion detection system (IDS). Cybersecurity infrastructures employ

IDS as an essential component and use it to protect systems and infrastructures from various threats.

 IDS is a permanent monitoring scheme applied in computer or network systems to monitor targeted

systems, collect audit data, analyze the gathered information to determine unusual activities and

establish response plans [2]. IDS should either model any type of attacks or anomalous events that can

affect the network under consideration (signature based) or build a general model that describes

normal traffic (anomaly based).

http://creativecommons.org/licenses/by/3.0

2

1234567890‘’“”

AIAAT 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 435 (2018) 012034 doi:10.1088/1757-899X/435/1/012034

 Network IDS comprises a set of single-purpose sensors or host computers that are positioned at

different points in a network or interconnected set of networks to monitor transmitted traffic. These

units examine network traffic packets in real time, perform local analysis for a captured packet, and

finally take action, such administrator notification [3]. NIDS involves two major detection techniques,

namely, misuse-based detection and anomaly-based detection [4]. Misuse detection systems, such as

works in [5, 6], define the behavior of an intruder and scan predetermined attack data to match

signatures. Anomaly detection systems, such as works in [5, 7], set only normal (typical) or expected

behavior and flag any deviation from this behavior. However, these two detection systems possess

weaknesses. Misuse detection systems cannot detect new forms of attack because their signatures are

not yet available for pattern matching. Anomaly detection systems produce a high false alarm rate

when adopted in most existing approaches because building practical normal behavior to protect

targeted systems is difficult [8].

 Many techniques have been utilized to enhance the performance of IDS. However, security experts

still strive to achieve IDS with improved performance, the highest detection rate and the lowest false

alarm rate. Machine learning has been impeccably accomplished in many areas of computer science,

such as speech, visual and face detection, but not sufficient in intrusion detection [3].

 Recently, developed techniques have elicited considerable attention in the search for a solution to

accommodate concerns regarding intrusion detection. These techniques include artificial neural

networks [5], evolutionary algorithms (e.g., genetic algorithm (GA) [9], particle swarm optimization

(PSO) [10], and ant colony optimization (ACO) [11]) and deep learning approaches (e.g., deep neural

network (DNN), restricted Boltzman machine, deep Boltzman machine, and convolutional neural

network (CNN)) [12]. The present study is focused on two of these methods: deep neural network

(DNN) and simulated annealing (SA).

 DNN and SA have not been sufficiently explored in literature. Furthermore, we selected these

methods due to the fact that DNN employs consecutive layers of information processing stages in a

hierarchical manner for pattern classification and feature or representation learning [10]. Moreover,

weight learning tasks are considered essential in the application of DNN. In other hand, SA has shown

good performance in solving continuous optimization problems due to the search mechanisms used in

its mutation operators [13]. Thus, a natural question arises: can we benefit from the advantages of SA

techniques in overcoming the training phase of DNN by injecting search strategies of SA into the

training operator of DNN algorithms?

 Although DNN can solve various learning tasks, it is difficult to train [14]. Deep-learning

algorithms, which inspired by the neurons that make up the human brain, have gained numerous

attention in scientific community due to their successful application in area. Recently proposed

optimization techniques for training DL use layer-wise pre-training. DNN training requires powerful

optimization techniques. Therefore, several conventional algorithms, such as BP, are used to solve this

issue. However, the BP algorithm is sometimes susceptible to convergence into local optima because it

is used as a local search method in which the final solution depends strongly on the initial weights [8].

The SA algorithm has been used to solve the global optimization problem. The primary advantage of

SA over other methods is its capability to avoid local minima [15]. The algorithm functions by

selecting the neighbourhood solution within a search space, accepting the worse solution, and moving

to inferior solutions to escape entrapment (i.e., local optimal solution). Thus, the efficiency and

robustness of the SA algorithm have been verified through the solution of numerical optimization

samples.

 We developed a new hybrid algorithm called SABP-DNN that combines SA and BP to build an

advanced training algorithm for DNN. The proposed algorithm was applied to detect intrusion in the

NSL-KDD dataset. This work exploited the local search capability of BP and the global search

capability of SA. We injected SA into DNN to facilitate training and improve the detection rate.

Consequently, combining SA with BP can reinforce the strengths of the two methods because of their

computational advantages and can thus reduce the computational time of the training phase. The well-

3

1234567890‘’“”

AIAAT 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 435 (2018) 012034 doi:10.1088/1757-899X/435/1/012034

known intrusion detection dataset (NSL-KDD) was used to test the performance of the proposed

method. The main contributions of this study can be summarized as follows:

 An intrusion detection model based on DNN-trained SA combined with BP was presented and

proven feasible its usefulness, as evidenced by the increased detection rate for NSL-KDD data.

 The principles of SA were examined to optimize the DNN weight and determine its

effectiveness in the IDS field.

 The efficiency of DNN was evaluated by using the NSL-KDD dataset. The SABP-DNN model

outperformed SA-DNN and BP-DNN in the detection task.

 The proposed SABP-DNN was compared with other techniques by using the NSL-KDD dataset

to confirm the applicability of the proposed approach.

The rest of this paper is structured as follows: Sections 2 provide a brief introduction to the

concepts of ANN and outline the mathematical overview of the DNN and SA, respectively. Section 3

and Section 4 discusses the use of SA combined with BP in DNN training. Section 5 discusses an

overview of the architecture of the proposed IDS. Section 6 presents the experimental setup and results.

Section 7 summarizes the conclusions and directions for future work.

2. Background

2.1. Deep neural network

The term DNN can have several meanings, deep is usually related to the hidden layers contained in a

neural network and formally defined as a learning model with many layers of nonlinear

transformations. Deep learning is one of the newest techniques of machine learning, it allows

computers to acquire human brain abilities in natural functionality such as learning using examples. A

DNN is comprised of a collection of advanced deep connected neurons listed in a distinctly layered

topology, namely, an input layer, one or multiple hidden layers, and a single output layer [16]. In DNN,

which is one of the mainstream deep learning methods, data moves forward these artificial deep

neurons from the input units, through the hidden units which processes an aspect of the data, and

eventually reaching the output units. The sample DNN includes of three hidden layers, one input layer,

and one output layer for a global of five layers. DNNs are typically trained by updating and adjusting

neurons weights and biases through the use of the supervised learning BP algorithm [14]. Each node in

layer performs a specific calculation, which is defined as:

 { } ({ }) (∑ { } { { }
{ }

{ }

{ }
}) (1)

Where z
l
 ∈ R

Nl is the stimulation vector, v
l
 is is the activation vector, wij ∈ R

Nl *Nl the connection weight

matrix, and βi ∈ R
N

is the threshold (or bias) vector. N ∈ R
Nl*Nl is the number neurons at layer l. f() : R

Nl

→ R
Nl is the activation function applied to the stimulation vector element wise. In most applications,

the sigmoid function and the hyperbolic tangent function is the most used as activation function for

ANN. Rectified Linear Unit function is popular activation functions for DNN.

2.2. Simulated Annealing Algorithm

SA is a generic probabilistic meta-heuristic for complex system optimization. SA was first proposed

by Kirkpatrick et al. [17] in 1983. The SA algorithm simulates the annealing process in metallurgy.

Annealing is a technique that involves heating a solid to the highest level and controlling cooling until

the energy state of internal atoms is reduced to a minimum and crystal growth has initiated.

 Here, we present a general outline of the algorithm. First, a random solution is generated and then

the cost is calculated using one of the defined functions. A random neighbor solution is generated and

the cost of the neighbor solution is calculated. The following comparisons are established: If the cost

of the neighbor solution is ‘smaller’ than the cost of the current solution, then the new solution is

accepted. If the cost of the neighbor solution is ‘larger’ than the cost of the current solution, then

4

1234567890‘’“”

AIAAT 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 435 (2018) 012034 doi:10.1088/1757-899X/435/1/012034

‘maybe’ the new solution is accepted. Nevertheless, it may be accepted after checking the Boltzmann

probability factor:

 ()
 ()

 ⁄
 (2)

where f(x) is the energy function, k is Boltzmann’s constant, and T is temperature [13]. The steps are

repeated until the algorithm reaches an acceptable solution or the maximum allowable iteration.

3. Design of proposed training method

The training process aims to generate a convenient network approach for the corresponding incoming

input, and this procedure is achieved through an iterative learning process. The learning process can be

considered as a modification of the randomly generated neural network weights based on the neural

network response to a set of training input patterns. Therefore, DNN training can be interpreted as

constructing a predictive model (function) and optimizing it in an n-dimensional space. This

optimization problem can be solved by SA, which is a stochastic global optimization method suitable

for nonlinear function optimization.

 The design of the proposed method uses DNN: -input layer one hidden layer with 10 neurons -one

hidden layer with 20 neurons -one hidden layer with 10 neurons -output layer. The most important

step in DNN training is the use of SA, which is a problem caused by the optimal combination of

connection weight values between DNN and SA. The problem of training DNN should be approached

suitably for the SA algorithm.

 The main goals of using SA to train DNN are to optimize weight complexity, minimize

approximation error, and achieve the required accuracy. These purposes can be accomplished through

a cost-based process by computing the cost value of each vector solution. The optimal solutions with

minimal cost value are selected. The solution vector is represented using values ranging from -1 to 1,

and the number of features in each solution vector is computed as follows:

 () () (3)

where nh, ni are the number of hidden neurons and input features, respectively.

 In this study, the cost function refers to the representation and measures of the represented solution

that used in the optimization algorithm. Cost function evaluates the efficiency of a single solution in a

population or the chance of finding a solution and reaching high coverage. The optimization process

terminates when the termination criterion is satisfied, which is the allowable number of iterations or a

satisfactory cost level, has been achieved. One of the cost functions is adopted in this study is as

follows:

 ∑

 (4)

where o is the desired output, y is the actual output, and R is the number of training samples.

Optimization can be terminated on the basis of two situations: First, the maximum allowable iteration

is reached. Second, the cost function threshold is attained. Consequently, the optimal state of network

has been achieved.

4. Improved training DNN with SA and BP
The improved training algorithm combines SA with BP; therefore the fundamental idea behind this

hybrid algorithm is to exploit the global search capability of SA and the local search capability of BP.

SA has a strong exploration capability for finding a global optimal solution, which means that SA has

stable capabilities in global convergence but arrives at the global optimum. Thus, its search process

slows down. By contrast, the BP algorithm can determine whether the global optimal solution is weak

or strong in finding a locally optimal solution. Thus, the BP algorithm is capable of attaining rapid

convergence around the global optimum for finding the local optimum.

5

1234567890‘’“”

AIAAT 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 435 (2018) 012034 doi:10.1088/1757-899X/435/1/012034

 The main principle behind combining SA with BP is as follows: SA is used to explore the global

optimum during the initial stage of optimum searching, and BP is used to search around the global

optimum to find the best local optimum.

 A collection of random solutions is generated to initiate searching process and training. SA

compares each network fitness value during each pass through a dataset. The solution with the optimal

cost value is considered as the global best optimum. The BP algorithm then exploits the global best

optimum to search for the local best optimum. The general training pseudo-code of SABP-DNN is

presented in Algorithm 1.

Algorithm 1 Combining SA with BP training DNN pseudo code

1: Initialize training parameters: lb, ub, K, n.

2: Creating a set of random solutions X = x1,x2,,,xn in range of [ub,lb].

3: for each solution do do

4: Calculate the MSE f(X) for solutions via equation 4.

5: if f(x) < fbest then

6: fbest = f(x)

7: end if

8: end for

9: Until (minimum T or K=0)

10: for each solution do

11: Use the BP algorithm to calculate a new solution x0.

12: Calculate the MSE of f(x),f(x0).

13: if f(x0) < f(x) then

14: fbest = f(x0),x = x0

15: else

16: Calculate the difference ∆f = f(x0) − f(x)

17: Random value r(0 , 1)

18: if r > e−∆f/kT then

19: fbest = f(x0),x = x0

20: else

21: fbest = f(x)

22: end if

23: f = fbest

24: Reduce the temperature gradually T = α T

25: end if

26: end for

27: Save the best solution with fbest

28: Go to step 9 if the end criterion is not satisfied.

5. OVERVIEW OF PROPOSED MODEL

As shown in Figure 1, the architecture of our proposed IDS mainly consists of three components: The

data input module and two basic modules, which comprise the DNN network and SA module.

 Figure 1 shows that the data are not directly fed to the DNN module. The data must be pre-

processed by normalizing, filtering, and extracting features from the NSL-KDD dataset [18]. The

training and testing dataset will be provided as the input to the next phase for various processes by the

DNN module.

In this study, the framework of the proposed system is based on the two stages of network training

and detection. The DNN training stage uses the SA algorithm such that network weights are treated as

solutions that have evolved in the SA algorithm. Once the evolutionary process of finding a suitable

solution for DNN is completed, a selected solution representing a set of weights, which are regarded as

the optimal weights, is achieved. The evolution process stops when termination is satisfied.

 Finally, in the detection stage, the testing data are loaded into predicted models to predict whether

the output exhibits normal or abnormal behavior. The detection stage uses the model established

during the training stage to map the predicted output with the matched classes.

6

1234567890‘’“”

AIAAT 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 435 (2018) 012034 doi:10.1088/1757-899X/435/1/012034

Figure 1. Framework of the proposed IDS.

6. EXPERIMENTAL SETUP AND RESULTS

6.1. NSL-KDD DATASET

NSL-KDD was developed in a suitable form by decreasing redundant instances that influence the

evaluation of IDS results [19]. NSL-KDD, which is constructed from records selected from the whole

KDDCup99 dataset, addresses many issues related to the KDDCup99 dataset by eliminating all

duplicate and redundant instances in the whole dataset.

 The NSL-KDD dataset includes the same features as the KDDCup99. Each NSL-KDD instance has

41 features that are labelled as either normal or an attack, with one specific attack type [1]. The whole

set is grouped into training and test sets whose attack instances are classified into four major classes,

i.e., DoS, U2R, R2L, and Probe, in accordance with purpose. Table 1 shows the distribution of the

records in the NSL-KDD dataset for the training and testing sets.

Table 1. Distribution of records in the NSL-KDD dataset.

 Normal Attack Total

Training set 13449 11743 25192

Testing set 9714 12830 22544

6.2. Evaluation Metrics

This proposed approach was implemented and evaluated in Visual Basic 2010 on a personal PC with

Core I5 2.4 GHz CPU and 4 GB RAM. This study does not focus on setting parameter values.

Nevertheless, the selection of these parameters remains an open question. The performance of the

proposed models is highly dependent on the proper setting of DNN and SA parameters. All feature

records in the experiment were represented at the same predefined boundary [0, 1]. Min-max

normalization is the most popular method to fit data in the same boundaries. The performance of the

proposed model is assessed via four main parameters: recall (R), precision (P), accuracy (ACC), and

F-measure (F). The result of the proposed model requires a high R, high ACC, and low false-alarm

rate [2].

6.3. Experimental Results

The performance of the proposed DNN-based IDS was evaluated through a series of experiments.

Two experiments were designed to study the performance of the DNN-IDS model for binary

classification (normal, anomalous) and compare it with other existing approaches using deep learning.

7

1234567890‘’“”

AIAAT 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 435 (2018) 012034 doi:10.1088/1757-899X/435/1/012034

 Minimum and maximum MSE and accuracy were evaluated from all the simulations. Initially, the

performance of the model depended on the value of the hyper-parameter initiated.

 The first phase of our experiment was performed with the NSL-KDD dataset. Here, 20% of the

whole NSL-KDD training dataset was used because these datasets have a large number of records that

may require a long computation time with ordinary CPUs and machines or may exceed memory

requirements. The training stage was completed with the selected training dataset. On the other hand,

the size of the randomly selected testing set is only 80% of the whole NSL-KDD testing dataset.

 Firstly, the Learners (BP) were tuned by selecting the hyper-parameters necessary to improve

performance. Moreover, we attempted to tune BP-DNN by finding the optimal learning rate within the

range of 0.6 to 0.02. We minimized MSE and maximized accuracy when training a model. Table 2

shows MSE of BP-DNN methods during training with NSL-KDD training dataset and the result of the

testing with NSL-KDD testing dataset where MSE and training time are taken as performance

evaluation factor. Table 3 shows performance of BP-DNN in terms of ACC, RECALL, PRECISION,

FPR and F-measure.

Table 2. Results of the experiment based on MSE for BP-DNN.

Learning rate Training set Testing set

 MSE Time MSE Accuracy

 MIN MAX

0.6 0,80628 0.96472 25960 0.51880 52.30

0.5 0.16171 0.96472 27278 0.23939 87.51

0.4 0.82659 0.96472 29686 0.50701 47.69

0.3 0.20567 0.96472 27478 0.21357 88.16

0.2 0.11717 0.96472 27329 0.22201 88.94

0.1 0.04025 0.96472 27683 0.12703 92.68

0.08 0.05152 0.96472 26586 0.12372 92.78

0.06 0.03015 0.96472 29153 0.15449 92.00

0.04 0.02786 0.96472 27877 0.16073 91.51

0.02 0.02224 0.96472 28570 0.15430 90.80

Table 3. Experimental results of BP-DNN for NSL-KDD.

Metric ACC DR=RECALL PRECISION FPR F-measure

results 92.78 85.78 79.41 0.020 91.32

 Secondly, the Learners (SA) were tuned by selecting the hyper-parameters necessary to improve

performance. Moreover, we optimized SA-DNN by finding the proper value of Alpha (α) within the

range of 0.9 to 0.1. We minimized MSE and maximized accuracy when training a model. Table 4

shows the MSE of SA-DNN methods during training with the NSL-KDD training dataset and the

result of the testing with the NSL-KDD testing dataset, where MSE and training time are regarded as

performance evaluation factors. Table 5 shows performance of BP-DNN in terms of ACC, RECALL,

PRECISION, FPR and F-measure.

 Table 2 shows that in the training phase, a low learning rate was followed by a decrease in MSE

and an increase in ACC. However, in the testing phase, when we reduced the learning rate to 0.009,

the results of each change were matched by a change in MSE and accuracy. Therefore, all of the

resulting changes were not as good as the learning rate of 0.08. Table 5 shows that the changing of (α)

value leads to the changing of MSE and ACC values. Alpha decreases from 0.7 to 0.3 where MSE

reaches its minimal value. Consequently, ACC achieves good result when MSE is minimal.

8

1234567890‘’“”

AIAAT 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 435 (2018) 012034 doi:10.1088/1757-899X/435/1/012034

Table 4. Results of the experiment based on MSE for SA-DNN.

Alpha Training set Testing set

 MSE Time MSE Accuracy

 MIN MAX

0,9 0.27312 0.85425 24667 0.27958 84.57

0.8 0.22926 0.85425 27278 0.22541 86.88

0.7 0.23744 0.85425 25229 0.32475 82.05

0.6 0.22063 0.85425 24798 0.28204 70.46

0.5 0.21523 0.85425 25109 0.32514 82.08

0.4 0.19672 0.85425 23413 0.19908 87.96

0.3 0.16918 0.85425 23388 0.18335 93.10

0.2 0.17396 0.85425 24736 0.22996 89.76

0.1 0.27549 0.85425 24429 0.27973 85.05

Table 5. Experimental results of SA-DNN for NSL-KDD.

Metric ACC DR=RECALL PRECISION FPR F-measure

results 93.10 88.00 97.25 0.022 92.17

 Comparison of the results of the training and testing phases related to the proposed approach

showed that SA-DNN achieved acceptable performance in terms of ACC (93.10), RECALL (88.00)

and time of training compared with BP-DNN. BP-DNN performed better than SA-DNN in terms of

PRECISION (97.41) and FPR (0.020). However, determining which method performs better by using

ACC, RECALL, PRECISION, and FPR is impossible because all the results are close. The metric of

F-measure provides a better measure of the accuracy of a model compared with all of the metrics

because both of precision (P) and recall (R) are considered for calculating F-measure. The goal is to

achieve a high F value to provide accurate results, which means all instances are classified correctly.

SA-DNN obtained (92.17) better results than BP-DNN (91.32). Therefore, SA provides accurate

results. For the overall evaluation, the learning rate of 0.08 and alpha of 0.3 of BP-DNN and SA-DNN,

respectively, reveal that these two methods showed the best performance. Thus, they were selected for

further evaluation.

 Although the results of BP-DNN and SA-DNN were not good enough, we evaluated the result of

the SABP-DNN model based on the two to show the performance of the proposed model. The

performance of the SABP-DNN algorithm was evaluated using the best parameter found in the two

previous experiments. Table 6 shows the MSE of the model with 0.08 learning rate and 0.3 alpha.

Table 7 shows performance of SABP-DNN based on ACC, RECALL, PRECISION, FPR and F-

measure.

 Table 6 shows that the result of SABP-DNN in terms of MSE was 0.03356 in 21842 ms. this result

shows an improvement compared with SA-DNN and BPDNN, which obtained 0.05152 in 26586 ms

and 0.16918 in 23388 ms, respectively.

Table 6. Results of the experiment based on MSE for SABP-DNN.

Learning rate / alpha Training set Testing set

 MSE Time MSE Accuracy

 MIN MAX

0.08 / 0.3 0,03356 0.08539 21840 0.08097 95.56

9

1234567890‘’“”

AIAAT 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 435 (2018) 012034 doi:10.1088/1757-899X/435/1/012034

Table 7. Experimental results of SABP-DNN for NSL-KDD.

Metric ACC DR=RECALL PRECISION FPR F-measure

results 95.56 91.88 98.73 0.010 94.17

 Table 7 also shows an improvement in the results in terms of ACC, RECALL, PRECISION, FPR,

and F-measure, which gained values of 95.56, 91.88, 98.73, 0.010, and 94.17, respectively.

Table 8 shows that our SABP-DNN approach performed better than the existing approaches.

Author/reference Technique Accuracy (%) DR (%) FAR (%)

[7] (2016) ANN 95.04 - 1.48

 LR 92.75 - 18.84

 NB 95.00 - 5

[11] (2014) SVM - 66.70 5.53

 CSOACN - 80.10 2.84

 CSOAC - 78.18 2.77

[18] (2012) SSOWLS 93.30 - -

 SSO 89.60 - -

 PSO 88.50 - -

[4] (2015) DNN 75.75 76.00 0.86

[17] (2016) ADBCC 92.71 91.79 3.50

[8] (2017) GSPSO-ANN 95.26 - -

 PSO-ANN 92.06 - -

 GS-ANN 92.81 - -

In this work(2018) SABP-DNN 95.65 91.88 0.01

 Overall, the SA algorithm is highly recommended for use in intelligent hybrid optimization

schemes, such as hybridization with BP, for finding optimal DNN weights. This recommendation is

based on the high exploratory behavior of the algorithm, which prevents finding the local optima

through training DNNs. The SA algorithm employs a random neighbor search, which allows changes

in acceptance probability to minimize loss function and inferior solutions to escape obtaining the local

optima. The highly exploitative behavior of the algorithm is another reason for the rapid convergence

of an SA-based trainer toward the global optimum for different datasets. Meanwhile, the BP algorithm

can determine if the global optimal solution is weak and finds a locally optimal solution. Moreover,

the BP algorithm can attain rapid convergence around the global optimum for finding the local

optimum. Combining SA with BP can reinforce the strengths of each method because of their

computational advantages and can reduce the computational time of DNN training.

7. Conclusion

This study demonstrated that the deep learning method of DNN can be successfully applied in

intrusion detection. This deep learning model learns high-dimensional representations and efficiently

performs attacks detection. SA can be combined with BP to train and adjust a DNN and to learn

similarity representation over nonlinear and high-dimensional input data. Doing so can perfectly

facilitate attack detection. In the IDS environment, the deep learning approach can be used to

successfully develop an advanced detection model for detecting potential attacks. The main advantage

of combining SA with BP is the use of distinct patterns to explicitly avoid being trapped in the local

minima. Hence, many of the issues of premature convergence can be prevented, and good data

generalization can be achieved.

Table 8. Performance of our proposed method SABP-DNN compared to other

methods for KDD99 dataset.

10

1234567890‘’“”

AIAAT 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 435 (2018) 012034 doi:10.1088/1757-899X/435/1/012034

 Experiments on the NSL-KDD dataset showed that our proposed approach, SABP-DNN,

effectively trains DNN compared with BP-DNN and SA-DNN training methods. The statistical results

showed that SABPDNN is robust because the variance values are small. The experimental results for

the NSL-KDD dataset showed that DNN can learn a good generative model and performs well in

intrusion detection. Deep learning approaches provide new design ideas and methods for future IDS

research. The results of this study prove the potential applicability of DNN as an alternative solution

for developing practical IDSs.

References
[1] I Ahmad, A. B Abdullah, and A S Alghamdi. Application of artificial neural network in detection of

probing attacks. IEEE Symposium on Industrial Electronics Applications, volume 2, pages 557–562, Oct

2009.

[2] T Ma, Y Yu, F Wang, Q Zhang, and X Chen. A Hybrid Methodologies for Intrusion Detection Based
Deep Neural Network with Support Vector Machine and Clustering Technique, pages 123–134, 2018.

[3] E Hodo, X Bellekens, A Hamilton, C Tachtatzis, and R Atkinson. Shallow and deep networks intrusion

detection system: A taxonomy and survey. arXiv preprint arXiv:1701.02145, 2017.

[4] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho. Deep learning approach for

network intrusion detection in software defined networking. In 2016 International Conference on

Wireless Networks and Mobile Communications (WINCOM), pages 258–263, Oct 2016.

[5] H Berlin, L Djionang, and G Tindo. A new networks intrusion detection architecture based on neural

networks. Global Journal of Computer Science: Network, Web and Security, 17(1):19–27, 2017.

[6] Q Xu, L Yang, Q Zhao, and Z He. A novel intrusion detection mode based on understandable neural

network trees. Journal of Electronics (China), 23(4):574–579, Jul 2006.

[7] N Moustafa and J Slay. The evaluation of network anomaly detection systems: Statistical analysis of the

unsw-nb15 data set and the comparison with the kdd99 data set. Information Security Journal: A Global

Perspective, 25(1-3):18–31, 2016.

[8] T Dash. A study on intrusion detection using neural networks trained with evolutionary algorithms. Soft

Computing, 21(10):2687–2700, 2017.

[9] G Ke and Y H Hong. The research of network intrusion detection technology based on genetic algorithm

and bp neural network. In Frontiers of Manufacturing Science and Measuring Technology IV, volume

599 of Applied Mechanics and Materials, pages 726–730. Trans Tech Publications, 10 2014.

[10] C Qiu and J Shan. Research on intrusion detection algorithm based on bp neural network. International

Journal of Security and Its Applications, 9(6):247–259, 2015.

[11] W Feng, Q l Zhang, G zh Hu, and J Huang. Mining network data for intrusion detection through
combining svms with ant colony networks. Future Generation Computer Systems, 37(Supplement C):127

– 140, 2014.

[12] M E Aminantoa and K Kimb. Deep learning in intrusion detection system: An overview. 2016.

[13] L Rere, M I Fanany, and A M Arymurthy. Simulated annealing algorithm for deep learning. Procedia

Computer Science, 72:137–144, 2015.

[14] T Nikoskinen. From neural networks to deep neural networks. 2015.

[15] H Shi and W Li. Evolving artificial neural networks using simulated annealing based hybrid genetic

algorithms. JSW, 5(4):353–360, 2010.

[16] A Koutsoukas, J. Monaghan, X l Li, and J Huan. Deep-learning: investigating deep neural networks
hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data.

Journal of Cheminformatics, 9(1):42, Jun 2017.

[17] S Kirkpatrick, C Gelatt, and M Vecchi. Optimization by simulated annealing. Science, 220(4598):671–

680, 1983.

[18] Y Y Chung and N Wahid. A hybrid network intrusion detection system using simplified swarm

optimization (sso). Applied Soft Computing, 12(9):3014 – 3022, 2012.

[19] M Tavallaee, E Bagheri, W Lu, and A Ghorbani. A detailed analysis of the kdd cup 99 data set,

CISDA’09, pages 53 –58, Piscataway, NJ, USA, 2009. IEEE Press.

