PAPER • OPEN ACCESS

Synthesis, Characterization, and Study of Antibacterial Activity of Some New Formazan Dyes Derivatives, Derived from 2-Mercapto Benzoxazole

To cite this article: Omar A. Mohammed and Omar S. Dahham 2018 IOP Conf. Ser.: Mater. Sci. Eng. 454 012015

View the article online for updates and enhancements.

You may also like

- Design and development of polybenzoxazine-POSS hybrid materials from renewable starting materials for low k and low surface free energy applications S Devaraju, K Krishnadevi, E Naveena et al.
- <u>Multiple-shape memory polymers from</u> <u>benzoxazine-urethane copolymers</u> Peerawat Prathumrat, Sunan Tiptipakorn and Sarawut Rimdusit
- Thermal properties of a series of tetrafunctional quinoxaline-based benzoxazine/monofunctional benzoxazine blends Tiantian Feng, Yanxia Li, Xiumei Zhang et al.

DISCOVER how sustainability intersects with electrochemistry & solid state science research

This content was downloaded from IP address 3.12.146.87 on 12/05/2024 at 07:54

Synthesis, Characterization, and Study of Antibacterial Activity of Some New Formazan Dyes Derivatives, Derived from 2-Mercapto Benzoxazole

¹Omar A. Mohammed, ²Omar S. Dahham

¹Iraqi Ministry of Education - Directorate of Anbar Education, Iraq. ²Center of Excellence Geopolymer and Green Technology, Faculty of Engineering Technology, University Malaysia Perlis, Kampus Unicity Alam Sg. Chuchuh, 02100 Padang Besar (U), Perlis, Malaysia.

Abstract. This research describes the preparation of new 2-mercapto benzoxazole (1) preprepared was reacted with 2-Aminophenol and carbon disulfide in presence of ethanolic potassium hydroxide in a single step, Then hydrazine benzoxazole (2) was synthesized from the reaction of the compound (1) with hydrazine hydrate in presence of alcohol. And aromatic aldehydes react with compound (2) to give aryl substituted (1,3-benzoxazole-2-yl) hydrazone (3a-f). Then formazan derivatives were prepared by a reaction hydrazon and diazonium salt different compensation for aromatic amines (4a-c, 5d-f). All compounds were confirmed by their Physical data,¹H- NMR, ¹³CNMR, and FTIR for some of them, the biological activities of these compounds have been assayed against two kinds of bacteria.

Keywords: 2-Aminophenol, 2-mercapto benzoxazole, 2- hydrazine benzoxazole, formazan, diazonium salt, Antimicrobial activity.

1. Introduction

In recent years Formazans compounds have found increasing applications in diverse fields [1-2]. In recent years Formazans compounds have found increasing applications in diverse fields. Formazan Skeleton is (-N=N–C=N–NH-) [2]. Formazans are polydentate ligands with donor atoms so that's why they have the ability to form complexes with metal atoms. Metal complex formazan is derived from non-metal complex formazan by treating it with metal salts such as FeSO4•7H2O, CrCl3•6H2O, and CuSO4•5H2O[3-6]. Formazans and their metal complex are ranging in color from red to orange as well as blue color [7-8]. Formazans and heterocyclic hydrazones are known for their spectrum of biological activities such as antiviral [9] antimicrobial [10], anti-inflammatory, antifungal [11], anticancer [12], anti-HIV [13], etc. Several formazans show promising antifertility [14] and antiparkinsonian activity [15] In the present study, we have synthesized formazan derivatives by coupling Schiff base prepared from 2-Hydrazinobenzoxazole (2) and various aldehydes with appropriate aniline derivatives in pyridine. (Scheme 1) The structures of these derivatives were assigned on the basis of IR, and ¹HNMR and ¹³C-NMR spectral data, which are used widly to characterize materials and chemicals [16-19]. The synthesized compounds were screened for their antimicrobial activities.

2. Experimental

All the chemicals and solvents used were of (Fluka, Aldrich, BDH) products and were used without recrystallization, Melting Point Electro thermal 9300 melting point Apparatus. Infrared spectra were recorded Spectrophotometer model Shimadzu 8400, Type (KBr), and ¹H- NMR spectrometer for

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

proton (¹ H-NMR) Bruker 400MHz, was to measure in Jordan in Ahl– Albate University, by a device Ultra shield 400 MHz.

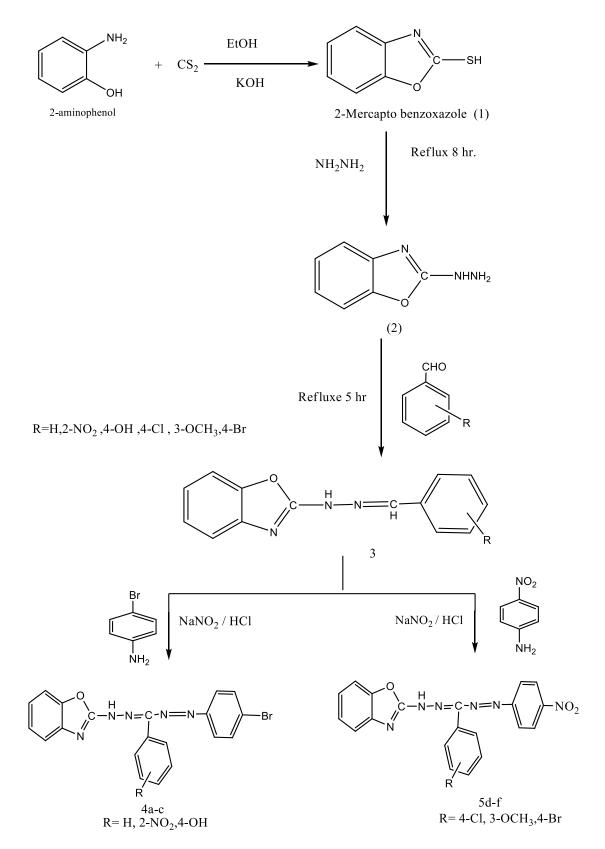
2.1 Synthesis of 2-Mercapto benzoxazole (1)

O - amino phenol 10.91gm (0.1mole) of was mixed with, 5.65 gm. (0.1mole) of potassium hydroxide and 7.67 gm. (0.1mole, 6.19ml) of carbon disulfide, 100ml of 95% ethanol and 15 ml of water in a 500ml round bottom flask heated under reflux for (3) hours. Then added 1-1.5 gm. of charcoal cautiously and the mixture is heated at for 10 minutes, the charcoal is removed by filtration. The filtrate is heated to 60-70°C, 100ml of warm water is added, and then acidified with dilute acetic acid with stirring. The product separated as glistening white crystals and the mixture is placed in a refrigerator for (3) hours to complete the crystallization. The product is collected on a Buckner funnel and dried overnight at 40°C. The dried product is recrystallized with ethanol [24]. The melting point is 183-185 °C, yield 85 Mol.wt. is 151.02 gm./mole. IR = Data: Ar CH = 3034, Ar C=C =1570, C=N= 1624, - C=S, 670.

2.2 Synthesis of 2-hydrazino benzoxazole (2)

2-Mercapto benzoxazole (1) (0.01 mole.) was mixed with (0.04 mole) and Hydrazine hydrate (25) ml (0.05 mole) are mixed well and heated on a water bath for 10 min. then dissolved in (50) ml methanol, the reaction mixture is heated with the reflux condenser for (8) hours, cooled to room temperature, the product filtered to give crystals colorless, then recrystallized with ethanol [25]. %, m.p.166-168°C (lit 171 °C) 10.Anal Calculate for C7H7N3S (M.wt. 218), IR, Cm-1: 3392, 3276, (-NH2), 3355(-NH), 3020,1597, 1035(arylring), 1650 (C=N), 1192, 1078, 669(C-S-C).;(

2.3 Synthesis of (2-benzylidene) hydrazine benzoxazole 3(a-f)


2-Hydrazinobenzoxazole (2) (0.001mol) was mixed with an aromatic aldehyde (0.001mol) in ethanol (50 ml) then added (3-4) drop of glacial acetic acid were refluxed on a water bath for (5) hours. After cooling to room temperature. The crystalline solid, which separated, was filtered and recrystallized from a suitable solvent [22]. The structure of synthesis compounds (3a-e) were confirmed by melting - point, the physical properties, and I-R spectral characterization data are given in below tables (1,3).

2.4 Synthesis of 1-(benzoxazole -2-yl)-5-(4-sub.phenyl)-3-arylformazan (4a-c,) (5 d-f)

Prepared by aniline derivatives (0.01mol) in glacial acetic acid (2ml) and HCl (1.5ml) was diazotized with NaNO2 (0.2g in 2ml water) at (0-5°C). The resultant phenyl diazonium chloride solution was added with stirring to compound (3) (0.01mol) in pyridine (7ml) was added in an ice bath. The reaction mixture was left at room temperature for two days. Then filtered and washed repeatedly with distilled water and recrystallized from a suitable solvent [23].then were confirmed by physical properties and I-R spectral data are given in below tables (2,4).

Antimicrobial Activity: All the newly synthesized compounds were screened for their antimicrobial activity determined by the ager diffusion method. Against *Escherichia Coli (G-)* and *Streptococcus (G+)*. Using EtOH as solvent at 50 and (100µg/ml) concentration, the plate was incubated at the appropriate temperature at (37 $^{\circ}$ C) by using the cup-plate method. After (24) hours the zone of inhibition was measured [24]. Results in Table (5).

IOP Publishing

Scheme 1. Path ways for synthesized compounds

International Conference on Materials Engineering and Science

IOP Publishing

IOP Conf. Series: Materials Science and Engineering 454 (2018) 012015 doi:10.1088/1757-899X/454/1/012015

3. Results and Discussion

2-mercaptobenzoxazole (1) was prepared from the reaction of O - aminophenol with CS₂ in ethanolic potassium hydroxide, yield was 85%, The melting point is 183-185 °C, and the data infrared = Ar- CH = 3034, Ar- C=C = 1570, C=N= 1624, - C=S, 670, as described in preparation method ^[1], 2-Hydrazinobenzoxazole (2) was prepared by reaction of the compound (1) with hydrazine hydrate. The was melting point of (166-168°C), the infrared was band at (3737 cm⁻¹) due to (NH₂), While (N-H) at (3296 cm⁻¹), band at (1650 cm⁻¹) for (C=N), (3064cm⁻¹) (Ar=CH), (1552-1600 cm⁻¹) (ArC=C) and at (1197 cm⁻¹) for (C-O-C) group, ¹³CNMR: 133.29 (N=C-N ring), 169.13 (C-O-C ring), (122.82-131.23) (C=C). as shown in Figure (1,6) .prepared 2-benzylidene) hydrazine benzoxazole (3a- f) of reaction the substituted aldehydes with compound (2) in ethanol. IR spectrum of the compound 2-[2-(4-chlorobenzylidene) hydrazine ebenzoxazole (2), showed clear absorption bands at (3194-3409 cm-¹) (N-H), (2825-2955 cm-¹) (=C-H), (3030-3070 cm-¹) (Ar=CH), (1610-1652 cm-¹) (C=N), and (1430-1581 cm⁻¹)(C=C), On the other hand of ¹H-NMR, showed, at δ =(2.50) ppm (C – H Aliph), at δ =(3.67)ppm (OCH₃), at δ =(7.13-7.96) ppm (C=C) of aromatic ring , at δ =(8.47)ppm(CH=N), and $\delta(12.46)$ ppm (NH). the Compound (3e) As shown in the table (3) and Figure (2,4). prepared 1-(benzoxazole -2-yl) -5-(4-sub.phenyl)-3-arylformazan(4a-c) (5d-f) of reaction, the compound (3a-f) with aniline derivatives and NaNO₂, added to pyridine, showed clear absorption bands at (3170-3420 (N-H), (3023-3080 cm⁻¹) (Ar=CH), (1606-1645 cm⁻¹) (C=N), and (1500-1594 cm⁻¹) cm^{-1} ¹)(C=C),(1407-1510 cm⁻¹) (N=N).On the other hand of ¹H-NMR , showed, at $\delta = (6.33-7.78)$ ppm (C=C) of the aromatic ring, and δ =(9.75) ppm (NH), the Compound (4b).¹³CNMR (133.44-133.67) (N=C ring) .(171.12) (C-O-C ring), (118.49-131.63) (C=C).(165.50) (N=C-N), the Compound (5d), As shown in the table (4) and Figure (3,5,7) [25].

Biological activity: All the newly synthesized compounds (3a, 3c, 4b, 5f) showed biological activities against gram-positive and gram-negative bacteria including *Streptococcus Pyogene* and *Escherichia coli*. The test results showed that the compounds (3a, 5f) showed highly active against *Streptococcus Pyogene* and *Escherichia Coli*. The compound (4b) showed no activity against of bacteria used. Results in Table (5).

Com	R	Molecular	Color	$M.P(^{0}C)$	Yield	Recryst.
р.		formula			(%)	Solvent
No.						
3a	Н	C14H11N3O	Yellow	200-202	70	EtOH
3b	2-NO ₂	C14H10N4O	Orang	222-224	92	МеОН
		3	-			
3c	4-OH	C14H11N3O	Dark	218-220	65	МеОН
		2	Yellow			
3d	4-C1	C14H10N3O	Pale	210-212	84	EtOH
		Cl	Brown			
3e	3-OCH ₃	C15H13N3O	Pale	230-232	80	МеОН
		2	Yellow			
3f	4-Br	C14H10N3O	Yellow	240-242	80	EtOH
		Br				

Table 1. Physical data and molecular formulae of the prepared comp	pounds (3 (a	a- e).
--	--------------	--------

Table 2. Physical data and molecular formulae	e of the prepared compounds(4a-c,) (5 d-f).
---	---

Comp.	R	Molecular	Color	$M.P(^{0}C)$	Yield	Recryst.
No.		formula			(%)	Solvent
4a	Н	C ₂₀ H ₁₄ BrN ₅ O	Light Brown	150-152	70	Diethyl
			_			ether
4b	2-NO ₂	$C_{20}H_{13}BrN_6O_3$	Red Brown	Gum	88	Chloroform

International Conference on Materials Engineering and Science

IOP Publishing

4c	4- OH	$C_{20}H_{14}BrN_5O_2$	Brown	114-116	50	EtOH
5d	4-C1	C ₂₀ H ₁₃ ClN ₆ O ₃	Brown	234-236	65	EtOH
5e	3-OCH ₃	$C_{21}H_{16}N_6O_4$	Dark Brown	Gum	73	Acetone
5f	4-Br	$C_{20}H_{13}BrN_6O_3$	Milky	Gum	75	EtOH

			IR, (KBr), cm ⁻¹						
Comp.			Fixed bands in structure						
No.	R	ν N- Η	v(=C H)Ar	vC – H Aliph	ν C=N.	vC=CAr	v C – N	N- N	Changed - bands in structure
3a	Н	3370	3035	2833- 2857	1620	1432,1580	1227	103 0	
3b	2- NO 2	3402	3070	2850,2 900	1614	1460,1543	1312	105 6	v(NO ₂) 1350
3c	4- ОН	3295	3055	2866,2 940	1610	1485,1565	1265	102 5	v(OH) 3342
3d	4- Cl	3367	3030	2825- 2900	1645	1500-1596	1260	101 2	v (C – Cl) 955
3e	3- OC H ₃	3194	3068	2888- 2905	1652	1430-1575	1376	107 0	ν (C–O– C) 1170
3f	4- Br	3409	3064	2955 2933	1620	1581-1502	1240	112 2	v (C – Br) 748

Table 3. IR spectroscopy for synthesized compounds (3a-f).

Table 4. FTIR spectroscopy for synthesized compounds (4a,4b,4c,5d,5e,5f).

Со			IR, (KBr), cm ⁻¹						
m			Fixed bands in structure						Change
p. No	R	νN-H	v(=CH)Ar	ν C=N.	vC=CAr	v C – N	N-N	vN= N	d bands in structure
4a	Н	3413	3033	1606	1512	1230	109 9	140 7	
4b	2- NO ₂	3320	3034	1617	1576	1290	102 2	147 0	v(NO ₂) 1390
4c	4- ОН	3170	3054	1622	1500	1398	110 0	148 2	v(OH) 3378
5d	4-Cl	3245	3080	1635	1594	1277	104 7	150 4	v (C – Cl) 960
5e	3- OC H ₃	3390	3023	1620	1570	1290	108 3	151 0	v (C–O– C) 1173
5f	4-Br	3420	3034	1645	1534	1300	101 8	149 0	v (C – Br) 782

 Table 5. Antibacterial activity of some prepared compounds [3a,3c,4b,5f].

Comp. No.	Conc.	G-Escherichia coli (G-)	Streptococcus Pyogene(G+)
3a	50	++	+ +++

	100	+	+
3c	50	+++	++
30	100	-	++
4b	50		
40	100	-	-
5f	50	+	++
51	100	+++	++

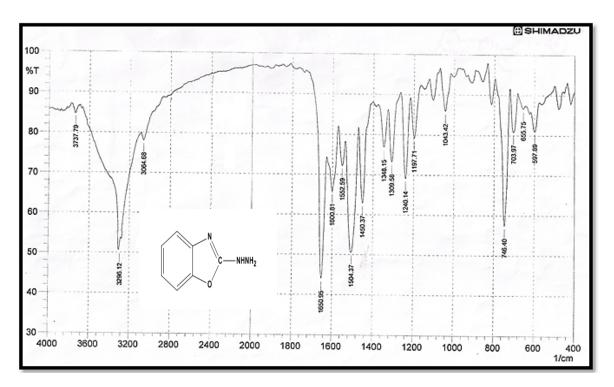


Figure. 1. FT-IR spectrum for compound(2).

International Conference on Materials Engineering and Science

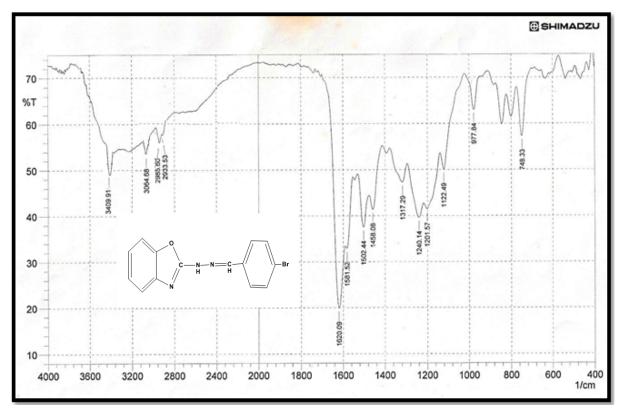


Figure 2. FT-IR spectrum for compound(3f).

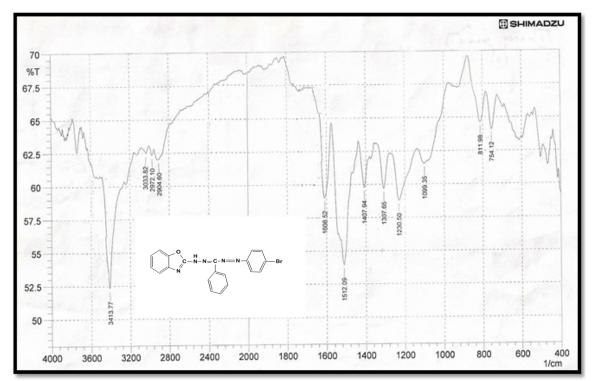
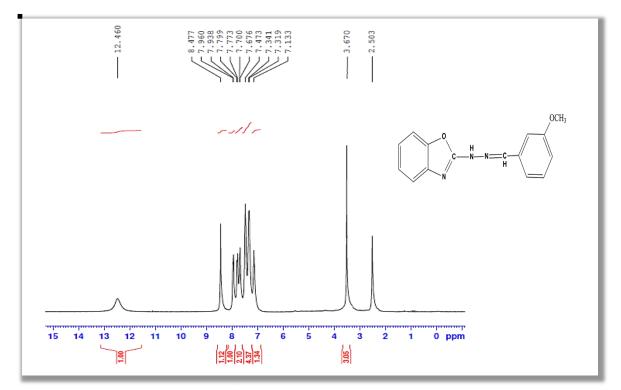
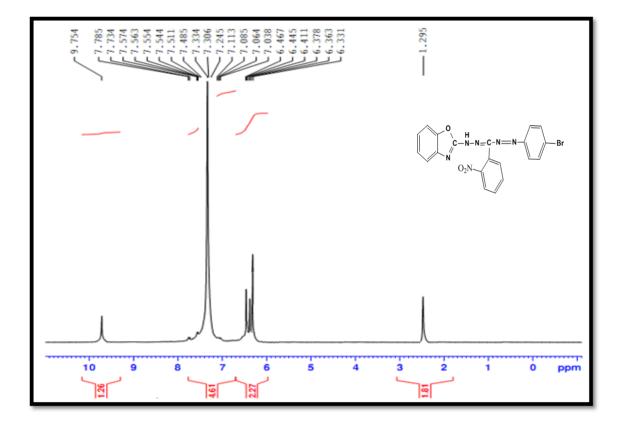




Figure 3. FT-IR spectrum for compound (4a).

Figure 4. ¹ H-NMR spectrum for compound(3e)

Figure 5. ¹ H-NMR spectrum for compound(4b)

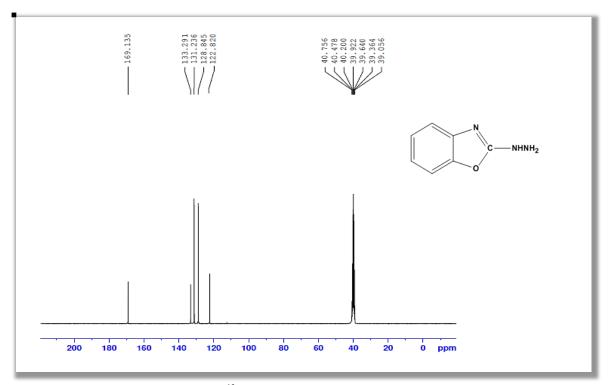


Figure 6. ¹³C-NMR spectrum for compound(2).

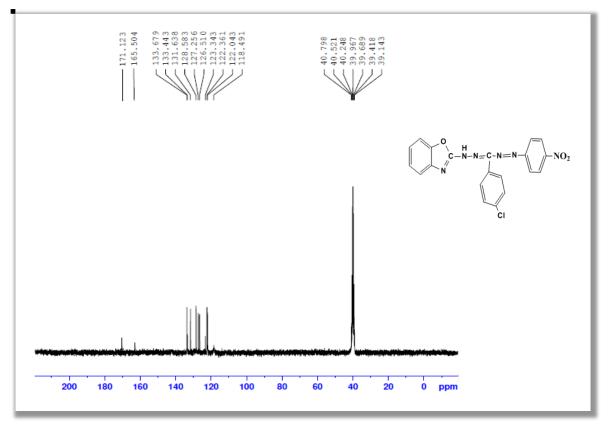


Figure 7. ¹³C-NMR spectrum for compound(5d)

4. Conclusion

It could be concluded that all the compounds (3a,3c,4b,5f) showed biological activities against grampositive and gram-negative bacteria including *Streptococcus Pyogene* and *Escherichia coli*. However, 3a, and 5f showed highly active against *Streptococcus Pyogene* and *Escherichia Coli*.

References

- [1] J W LEWI S and C SANDORFY. "Infrared absorption and resonance Raman scattering of photochromic triphenylformazans" *Can. J. Chem.* (1983). 61,pp. 809 -816.
- [2] L Hunter and C B Roberts" The associating effect of the hydrogen atom. Part IX. The N-H-N bond. Virtual tautomerism of the formazyl compounds" *journal of the Chemical Society* .1941, Pages 820-823.
- [3] A A Abbas" New synthesis of 28- and 30- crown-formazans and bis formazans" *Tetrahedron*. October 1998.Vol. 54, Issue 40, Pages 12421-12428.
- [4] S A Khan, S Shahid, S Kanwal and G Hussain " Synthesis characterization and antibacterial activity of Cr (III), Co (III), Fe (II), Cu (II), Ni (III) complexes of 4-(2-(((2-hydroxy- 5-nitrophenyl) diazenyl) (phenyl) methylene) hydrazinyl) benzene sulfonic acid based formazan dyes and their applications on leather"*Dyes and Pigments.* January 2018, Vol. 148, Pages 31-43.
- [5] A K .Abdul Rahim. "Metal complexes of formazans " **Thesis**. Department of Chemistry, University of Calicut, 2000.
- [6] H Tezcan" Synthesis and spectral properties of some bis-substituted formazans" *Spectrochim Acta* (2008), Part A, 69 pp. 971-979.
- [7] A Bamoniri, B FMirjalili and N M Arani" Nano BF3·SiO2: A green heterogeneous solid acid for synthesis of formazan dyes under solvent-free condition" *Journal of Molecular Catalysis A: Chemical.* 1 November 2014, Vol. 393, Pages 272-278.
- [8] A S Shawali and N A Samy "Functionalized formazans: A review on recent progress in their pharmacological activities" *Journal of Advanced Research*. 2015 vol.6, pp.241–254.

- [9] D Vanita.S Supriya, S Mahajan" Development of gallic acid formazans as novel enoyl acyl carrier protein reductase inhibitors for the treatment of tuberculosis" *Bioorganic & Medicinal Chemistry Letters.* 15 February 2017, Vol. 27, Issue 4, Pages 808-815.
- [10] R M Desai and J M Desai "Synthesis and antimicrobial activity of some new formazan derivatives' *Indian J. Heterocycl. Chem*.(1999), vol.8(4).pp,329–331.
- [11] L dwards, H S Freeman and L Dclaxton" Developing azo and formazan dyes based on environmental considerations: *Salmonella* mutagenicity"*Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis*. 26 February 2004, Vol.546, Issues 1–2 Pages 17-28.
- [12] S D Bhardwaj, P Phatak and V S Jolly, "Anti-cancer activity of Formazans" *Orient J Chem.*, 1995, 2, pp.181-186.
- [13] S D Bhardwaj and V S Jolly "Synthesis, anti HIV and anticancer activities of some new formazans". *Asian J Chem* (1997), vol. 9:48–51.
- [14] J M Desai and V H Shah "Synthesis and antimicrobial profile of 5-imidazolinones, sulphonamides, azomethines, 2-azetidinones and formazans derived from 2-amino-3cyano-5-(5-chloro-3-methyl-1-phenyl pyrazol-4-yl vinyl)-7,7- dimethyl-6,7-dihydro benzo thiophenes" *Indian J.Chem*, (2003), vol.42.pp.631–636.
- [15] R P M M C Gomez, S D Hermano, C P María and D G D Sanchez "The MTT-formazan assay: Complementary technical approaches and *in vivo* validation in *Drosophila* larvae"*Acta Histochemica*, April 2018, Vol. 120, Issue 3 .Pages 179- 186.
- [16] O S Dahham, R Hamzah, M A Bakar, N N Zulkepli, S S Ting, SM F Omar, T Adam, K Muhamad, S S Dahham 'Synthesis and structural studies of an epoxidized natural rubber/titania (ENR-50/TiO2) hybrid under mild acid conditions' *Polym. Test.* (2018), vol 65, 10-20.
- [17] O S Dahham, R Hamzah, M A Bakar, N N Zulkepli, S S Dahham, S S Ting 'NMR study of ring opening reaction of epoxidized natural rubber in presence of potassium hydroxide/isopropanol solution' *Polym. Test.* (2017), vol 59, 55-66.
- [18] R Hamzah, M A Bakar, O S Dahham, N N Zulkepli, S S Dahham 'A structural study of epoxidized natural rubber (ENR 50) ring opening under mild acidic condition' *Journal of Applied Polymer Science*, (2016), vol 133, 44123
- [19] O S Dahham, R Hamzah, M A Bakar, N N Zulkepli, A M Alakrach, S T Sam, M F Omar, T Adam, A A Al-rashdi 'Insight on the structural aspect of ENR-50/TiO2 hybrid in KOH/C3H8O medium revealed by NMR spectroscopy. *Arabian Journal of Chemistry* (2018), DOI: https://doi.org/10.1016/j.arabjc.2018.05.003
- [20] R Raviraj, G Jadhava, b Srikanth, P Harathic, G P Shinde " Synthesis of some novel benzoxazole derivatives and their antimicrobial activity"*Journal of Pharmacy Research*. 2011,vol.4 (10), pp.3562-3565.
- [21] F W Askar, H A Hassan and N A Jinzeel "Synthesis of Some Heterocyclic Compounds Derived from 2-Mercapto Benzoxazole" *Baghdad Science Journal* 2013Vol.10(3).pp.766-778.
- [22] Z Hussain , E Yousi , A Ahmed and A Altai, "Synthesis and characterization of Schiff bases of sulfamethoxazole" *Organic and Medicinal Chemistry* Letters , (2014).pp.4,1.
- [23] V Z Mády,I Pintér, M P Kajtár and A Perczel "Transformation of aldose formazans. Novel synthesis of 2-acetamido-2-deoxypentonolactones and a new pent-2-enose formazan"*Carbohydrate Research*, 6 September 2011.Vol. 346, Issue 12, Pages 1534-1540.
- [24] A Rama, R Nadendla. N Babu, "Synthesis and Biological Evaluation of Some Novel Formazans" *Journal of Pharmacy Research*, (2011). Vol.4(1),pp.3.
- [25] R M Silverstein, G C Bassler and T C Morrill, (1981)."Spectrometnic Inntification of organic Compound "',4thEd.John Wiley and Sons , Inc., New York.