
IOP Conference Series: Materials
Science and Engineering

PAPER • OPEN ACCESS

Dynamic Balance Strategy of High Concurrent
Web Cluster Based on Docker Container
To cite this article: Weizheng Ren et al 2018 IOP Conf. Ser.: Mater. Sci. Eng. 466 012011

View the article online for updates and enhancements.

You may also like
Comparison of dynamic balance before
and after core stability exercise in new
member of Art and Cultural UKM,
Muhammadiyah University Makassar
Ade Fachriani Ilyas, Aco Tang and
Nahdiah Purnamasari

-

Write/erase stress relaxation effect on
data-retention and read-disturb errors in
triple-level cell NAND flash memory with
round-robin wear-leveling
Yoshiaki Deguchi, Atsuro Kobayashi and
Ken Takeuchi

-

On the reproducibility of extrusion-based
bioprinting: round robin study on
standardization in the field
David Grijalva Garces, Svenja Strauß,
Sarah Gretzinger et al.

-

This content was downloaded from IP address 3.146.176.81 on 17/05/2024 at 20:34

https://doi.org/10.1088/1757-899X/466/1/012011
/article/10.1088/1742-6596/1529/3/032026
/article/10.1088/1742-6596/1529/3/032026
/article/10.1088/1742-6596/1529/3/032026
/article/10.1088/1742-6596/1529/3/032026
/article/10.7567/JJAP.56.04CE01
/article/10.7567/JJAP.56.04CE01
/article/10.7567/JJAP.56.04CE01
/article/10.7567/JJAP.56.04CE01
/article/10.1088/1758-5090/acfe3b
/article/10.1088/1758-5090/acfe3b
/article/10.1088/1758-5090/acfe3b
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjstrrtch6OhBuzG1WBhlQfEEUQ1nuQ6ZqHsaAH9LZu2dtSbNW3LIRQOWQV_xIHN39nB3TW7InUAWdpKHU7N-LtadmMm29aHRbADBwI5X_3x3cukjosagcpmvCe3Pj3zK6XgMosZqqy1-5aKaLLTfEu20enjrWUcbrinw_rf6tLkaGNIxJxgD_SNTVjCLepDhZOVvJhuG-kkMm2mBW2LO4pyvLHGqd908dUOzhcOMoM9qFpL38WXjj-5qJP7NzG8NZFa7o7wEPyxULGzwhPY2YEPxY3dwX_Swam3je_wOxsu92NYUWNS1M5cEZwFKKpbNWD47Td5TplZmDTVmOItj9liBhGIUOrC3&sig=Cg0ArKJSzCnOh4lpVZxf&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

CTCE 2018

IOP Conf. Series: Materials Science and Engineering 466 (2018) 012011

IOP Publishing

doi:10.1088/1757-899X/466/1/012011

1

Dynamic Balance Strategy of High Concurrent Web Cluster

Based on Docker Container

Weizheng Ren, Wenkai Chen and Yansong Cui

School of Electronic Engineering, Beijing University of Posts and

Telecommunications, Beijing, China.
Email: 1101959390@qq.com

Abstract. With the rapid development of the Internet in today's world, there are more and more

applications based on network in our daily life, and the changes put forward higher

requirements to the web systems of concurrency, scalability and availability. Based on the

research of the Docker container virtualization technology and the container management

platform Kubernetes, by improving the load balance strategies of Round-Robin and Weighted

Round-Robin, this paper proposes a high-concurrency and easy-extending high concurrency

cluster dynamic balance strategy to support the web system, which can guarantee the web

system of high concurrency and high availability performance, implement reasonable and

flexible configuration of system resources and realize the functions of automatic management

and performance monitor of the system.

1. Introduction

With the rapid increase of user and data, the web system generally supports high-concurrency

performance of the system through server clusters and distributed methods and the external requests
need to be balanced by the load balancer’s balance strategy. With the development of container
virtualization technology, operate system level virtualization technology has been rapidly developed
and applied. By improving the load balance strategies of Round-Robin and Weighted Round-Robin
and combining the characteristics of container virtualization service, this paper proposes a dynamic
load balance design scheme to support high concurrent web cluster system based on Docker and
Kubernetes.

2. Docker and Kubernetes

As shown in figure 1 and figure 2, Docker is an open source application container engine based on Go
which can package and publish applications[1]. And Kubernetes is Google's open source container
cluster management system which provides container application deployment, maintenance, and
extension mechanisms[2].

http://creativecommons.org/licenses/by/3.0

CTCE 2018

IOP Conf. Series: Materials Science and Engineering 466 (2018) 012011

IOP Publishing

doi:10.1088/1757-899X/466/1/012011

2

Daemoon

Image

Container

docker build/pull/runClient

Docker Hub

Private RegistryRegistry

Server

API Server
Controller

Manager
Scheduler

etcd(key-value DB,

SSOT)
Master

Node

Kube-proxy

kubelet

Docker engine

Service

Container

Pod PodPod

Client

Figure 1. The Architecture of Docker Figure 2. The Architecture of Kubernetes

3. The Challenge of Traditional Balance Strategy based on Nginx

As shown in figure 3, Nginx is generally selected as the load balancer to implement request
forwarding and processing. The traditional balance strategy based on Nginx such as Round-Robin,

Weighted Round-Robin do not consider the dynamic change of server performance during the system
running process, and the number of backend server groups can’t be adjusted according to the request
amount because of no dynamic strategy based on different workloads and no state monitor for the
backend server[3-5].

Http Request Http Request

Nginx Load BalancerNginx Load Balancer

Back server clusterBack server cluster

se
rv

er
1

se
rv

er
1

se
rv

er
2

se
rv

er
2

se
rv

er
n

se
rv

er
n

…

 Load Balance Strategy
 upstream backserver{
 server server1 weight=w1;
 server server2 weight=w2;

 …
 server servern weight=wn;
 }

 server {
 listen 80;
 server_name ip;
 location / {
 proxy_pass http://backserver/;
 }
 }

 Load Balance Strategy
 upstream backserver{
 server server1 weight=w1;
 server server2 weight=w2;

 …
 server servern weight=wn;
 }

 server {
 listen 80;
 server_name ip;
 location / {
 proxy_pass http://backserver/;
 }
 }

Figure 3. The Architecture of Nginx load balance

4. The Design and Implement of Dynamic Balance Strategy

4.1. System Architecture
As shown in figure 4, the system mainly consists of a Master node and multiple Node nodes based on
the Kubernetes container management platform. The dynamic balance control module dynamically
adjusts the cluster number and the weight of the cluster server group according to the performance

CTCE 2018

IOP Conf. Series: Materials Science and Engineering 466 (2018) 012011

IOP Publishing

doi:10.1088/1757-899X/466/1/012011

3

data according to the dynamic balance strategy, thereby achieving reasonable forward of high
concurrent requests and improving the overall throughput of the system[6-8].

K8sNode Pool

Docker hub

Private Resgistry
docker

kubelet

docker

K8S Master

etcd

Controller

Scheduler

Apiserver
Nginx Load

Balancer

Http

Dynamic Balance

Controller

cAdvisor Monitor

Banlance Strategy

Service(Pod) Cluster

collect Pod clusters

performance periodically

weight calculation

dynamic refresh balance strategy

dynamic load balance

Figure 4. The Architecture of Dynamic load balance system

4.2. Design and Implement

Firstly, the strategy defines the performance quotas of the quantized Pod service and the weight of
relative performance quotas. And then calculates real-time performance weight ratio of the cluster by
the weight summation algorith. Finally, adjusts the number of clusters and the cluster service weight
dynamically according to the dynamic balance strategy [9-10].

4.2.1. Definition and Calculation of Pod Performance Quotas. The matrix is defined:

K = [Kcpu, Kmem, Knet, Kio, Kcon]

The K is defined to describe the performance quota of Pod, Kcpu represents available CPU cores,
Kmem represents available memory, Knet represents network transmission rate, Kio represents the
percentage of I/O idle time in one second and Kcon represents available TCP connections. And all the
quotas can be obtained and calculated by cAdvisor API or linux command.

4.2.2. Relative Weight Definition of Pod Performance Quotas. The matrix is defined:

P = [Pcpu, Pmem, Pnet, Pio, Pcon]

The P represents the proportion of CPU, memory, network, IO and connection number in the overall
performance of the Pod service, which can be adapted to different workloads by changing its weight
ratio:

(1)CPU intensive: A large amount of computational CPU resources are required, such as

high-definition decoding of video resources. At this time, the proportion of CPU and memory should

be increased appropriately, for example 𝑃 = [2, 2, 1, 1, 1].
(2)IO intensive: A large number of IO resources are required such as network data transfer and

database operations. At this time, the proportion of network and IO should be increased appropriately,

for example 𝑃 = [1, 1, 2, 2, 1].

CTCE 2018

IOP Conf. Series: Materials Science and Engineering 466 (2018) 012011

IOP Publishing

doi:10.1088/1757-899X/466/1/012011

4

(3)Response time intensive: Most online websites focus on the user experience and require the
system to respond quickly. At this point, every factor should be considered to ensure that the most

requests can be forwarded to the server with better average system performance, for example: 𝑃 =
[1, 1, 1, 1, 1].

4.2.3. Normalization Process and Calculation of Overall Weight Ratio. The data needs to be
normalized to eliminate different dimensions impact on the overall weight ratio. Assume that the
number of service Pod clusters is N which are sequentially numbered i=1, 2...n, and then use the
monitor module to periodically acquire the Pod cluster server Podi in a certain performance quota

(CPU, memory, IO, network rate, and available connections) Xi (i = 1, 2, 3… n). After normalization,
the normalization value Ki of the number i Pod cluster node under this quota can be calculated:

Ki =
Xi

∑Xi
(i = 1,2 … n)

The Wi which represents the overall weight ratio of the number i Pod cluster node Podi is defined:

Wi = Ki ∗ PT = [Kcpui, Kmemi, Kioi, Kneti, Kconi] ∗ [Pcpu, Pmem, Pio, Pnet, Pcon]T

And W which represents the overall weight ratio of the Pod cluster can be calculated by performing
the above calculation for each Pod:

W = K ∗ PT = [K1, K2, … Kn] ∗ PT

4.2.4. Flow Chart of Dynamic Balance Strategy. The Pod cluster node service is deployed by the
container. The number of clusters can be dynamically adjusted by the load of the system according to

the CPU and memory utilization in the cluster.

Start

Determine the number of clusters N, the Pod Cluster performance

quota K, the quota weight P, the Nginx initial balance weight W0.

Collect and calculate Pod cluster cpu and memory utilization

Rc, Rm periodically by cAdvisor monitor module

N1>0.8N

Collect the real-time parameters X of the Pod cluster

quato K periodically by the cAdvisor monitor module

Add 1 to the number of clusters,

change the balance file, set the

new Pod weight to Wmax.

Normalize the real-time parameter X and combine the quato weight P

to calculate the overall performance weight ratio of the Pod cluster

Update the nginx balance configuration file real-time weight W dynamically

according to the Pod cluster real-time performance weight ratio

N2>0.8N

Delete the smallest W weight Pod, the

number of clusters is reduced by 1.

Adjust the Pod cluster according to the real-time load balance

configuration, and perform request forward process.

yes

no

yes

no

Configure pod yaml template file, start the

Pod cluster and the Nginx service

Start a new Pod based on

the yaml template file

Calculate the number of Pods with Rc

and Rm utilization exceeding 80% N1

Calculate the number of Pods with

Rc and Rm utilization below 20% N2

Figure 5. Flow Chart of Dynamic Balance Strategy

CTCE 2018

IOP Conf. Series: Materials Science and Engineering 466 (2018) 012011

IOP Publishing

doi:10.1088/1757-899X/466/1/012011

5

As shown in figure 5, the dynamic balance strategy starts with the Pod cluster, determines the
quantization performance quotas and corresponding weights, sets the initial balance weights W0, and
collects the quotas of the Pod cluster by the cycle time T. According to the periodic performance quota
real-time data X, the data under different performance indicators is normalized to K, and the real-time
overall performance of the Pod service cluster W is calculated according to the K and the
corresponding weight P. And then the balance configuration file is dynamically refreshed according to

the real-time performance weight ratio of the cluster W, thereby implementing dynamic processing
and forwarding of the request.

5. Experiment and Result Analysis

5.1. Setup of Experimental Environment

The physical conditions of the experimental physical machine are as shown in table 1.

Table 1. Hardware Environment

Node CPU memory bandwidth

Master Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz 2core 8GB 1000Mb/s

Node Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz 2core 4GB 1000Mb/s

Set the performance parameters of the monitor module collect the periodic time T to 10s, let 𝑃 =
[1,1,1,1,1]. Use http_load to simulate 1000 access, gradually increase the number of access requests
from 1000 to 10000, and experiment the changes in throughput and response time of the system under
different strategies.

5.2. Experiment Result and Analysis
The result of the change trend graph of the throughout and average response time is as shown in figure
6 and figure 7.

Figure 6. Throughput change trend graph

Figure 7. Average response time change trend graph

0

500

1000

1500

2000

2500

3000

Visit 1000 2000 3000 4000 5000 6000 7000 8000 9000

Th
ro

u
gh

o
u

t（
fe

tc
h

es
/s

ec
）

Throughput change trend graph

Round-Robin

WeightedRound-Robin

Dynamic Balance

0

100

200

300

400

500

600

700

800

900

1000

Visit 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e
ra

g
e
 r

e
sp

o
n
se

 t
im

e
（

m
s）

Average response time change trend graph

Round-Robin

WeightedRound-Robin

Dynamic Balance

CTCE 2018

IOP Conf. Series: Materials Science and Engineering 466 (2018) 012011

IOP Publishing

doi:10.1088/1757-899X/466/1/012011

6

From the result we can known that when the number of access is small the traditional strategy
performance are better because the traditional strategy need less calculation and can process the
requests quickly. As the number of concurrent access increasing, the server cluster state changes
dramatically and the traditional strategy can not maintain the stability of the throughput and response
time and the throughput decreases and the response time increases. However the dynamic strategy can
maintain the system throughput and response time within a reasonable range of variation. The

dynamic balance strategy implements the performance monitor of the cluster by quantifying the
cluster performance parameters, dynamically adjusts the number of clusters according to the resource
utilization of the cluster, and adjusts the weight of the back-end services according to the overall
real-time performance ratio of the cluster to implement dynamic forwarding and processing of
requests which effectively improve the system's throughput and response time and other performance
in high concurrency.

6. Conclusion

Compared with the traditional Round-Robin and WeightedRound-Robin strategy, the Dynamic
Balance strategy can implement the monitor of the performance and the number of the service cluster
and adjust the cluster real-time balance weight according to the running state of the service cluster
which can improve the concurrent performance of the system throughput and response time in a
certain business scenario.

7. References

[1] Siwei Liu, Qiang Li, Bin Li. Research on Container Isolation Based on Docker Technology[J].
 Software, 2015, 36(04): 110-113

[2] Xugang Yin. Research and implementation of Docker-based PaaS platform technology [D].
 Beijing University of Posts and Telecommunications, 2016

[3] Wei Wang. Research and Design of Dynamic Cluster Strategy Based on Web Application [D].

Suzhou University, 2014
[4] Lianlian Wang. Research and Optimization of High Performance Web Application System

 Architecture [D]. Beijing University of Posts and Telecommunications, 2016
[5] Yusen Zhang, Tao Chen, Kang Li. A comparative study on the principle and strategy of Nginx

 high concurrent load balancing [J]. Industrial Control Computer, 2018, 31 (01): 85-86+89
[6] Shengnan Liu, Shilin Wang. Improvement of Web Service Dynamic Load Balancing Strategy in

 Virtual Environment[J].Computer Engineering & Science, 2015, 37(09): 1607-1613

[7] Liyao Li, Shaoka Zhao, Dongsen Lin, Cong Xu, Jiahai Yang. Dynamic load balancing
 mechanism of virtual machine cluster system under cloud environment[J].Computer
 Applications, 2014, 34(11):3082-3085+3090

[8] Pengfei Yang. Research and implementation of resource dynamic scheduling based on
 Kubernetes[D]. Zhejiang University, 2017

[9] Changjun Xu, Tao Lin. Optimization of load balancing method based on Nginx [J].Journal of
 Hebei University of Technology, 2016, 45(06):48-52

[10] Mayuri A. Mehta, Devesh C. Jinwala. A Hybrid Dynamic Load Balancing Algorithm for
Distributed System [J]. Journal of Computers, 2014, 9(8)

