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Abstract. Joints comprised of materials with different thermo-physical properties are often 
advantageous for lightweight components. However, the fabrication of such joints has become 
a key issue for joining technologies. An innovative approach to overcome the associated 
challenges is the use of reactive particles. Each reactive particle contains at least two reactants, 
which are able to undergo an exothermic, self-sustaining reaction after the ignition by an 
external energy input. Depending on the stoichiometric ratio of the reactants and the heating 
rate, temperatures up to 1500 K are reached within milliseconds for the nickel and aluminium 
system. In the automotive industry, bonding is state of the art for applications in 
electromobility. Yet, slow cross-linking of the adhesive increases cycle times and results in an 
initial low handling strength, which requires additional mechanical fixings. The benefits of 
using reactive particles in epoxy-based adhesives are shown in this paper. Varying quantities of 
reactive particles were integrated into two part epoxy adhesives and activated with microwave 
energy. Due to the promotion of the cross-linking of the epoxy resin and the reaction of the 
particles by the microwaves, curing times were significantly shortened. Joining aluminium and 
polypropylene specimens demonstrated the potential of the presented approach. 

 Introduction 
Joining technologies play a key role in production engineering as they enable the use of composite 
materials for a resource-efficient lightweight design. A versatile and industrially established 
technology for joining components with different thermo-physical properties is adhesive bonding. 
However, processing reactive adhesives like epoxy resins, which are widely used due to their excellent 
temperature and environmental resistance, requires a certain period of time because of the curing 
reaction. In order to guarantee reasonable cycle times, additional mechanical fixings are often applied 
to overcome the initial low handling strength of the joint. Reactive particles, which were originally 
used in the field of combustion synthesis for fabricating high performance materials, represent a 
promising approach to reduce curing times. The exothermic reaction of each particle can be utilised as 
a tailored heat source to promote the cross-linking within the epoxy resin’s network. By integrating 
reactive particles into adhesives, the advantageous characteristics of both constituents are combined in 
an innovative way. 

1.1. Reactive particles in production engineering 
Combustion synthesis, also denoted as self-propagating high temperature synthesis, has become an 
important field of research in academia and industry since the discovery of the solid flame 
phenomenon by A. G. Merzhanov [1]. The fundamental reason for this development is the unique 
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reaction characteristic of reactive systems. Two or more homogeneously mixed reactants undergo a 
self-sustaining, highly exothermic reaction after a defined energy input. As the term combustion 
synthesis implies, the main research focus is on the production of high performance materials, such as 
carbides, borides, nitrides, intermetallics, and composite powders [2]. The released energy allows the 
sublimation of impurities during the reaction and results in high-purity alloys. Another valuable 
approach is not to consider the reaction product, but the targeted use of the reaction heat. In 
propellants, the exothermic reaction of nickel and aluminium can be used to influence and stabilise the 
combustion reaction [3]. Furthermore, joining technologies, like welding, soldering, and bonding, 
require a controllable heat source, which can be provided by reactive systems. 

In order to release the reaction heat in a defined way, the type of energy input to initiate the 
chemical reaction plays an essential role. Basically, two theoretical reaction modes need to be 
distinguished when studying the activation and reaction behaviour of reactive systems: the propagating 
and the simultaneous combustion mode [4]. A locally confined energy input into the reactive system 
results in the propagating mode and in the formation of a reaction front. Typical activation methods 
include for example a mechanical impact [5], a heated wire [6], or a laser beam [7]. The self-
sustaining reaction front propagates through the reactive system until the reactants are fully converted 
into products. The simultaneous combustion mode occurs if the reactive sample is homogeneously 
heated to the ignition temperature, e. g. by a furnace [8] or electromagnetic radiation [9], and the 
combustion reaction is concurrently activated at each position within the reactive system. 

Due to the high reaction rates and theoretical maximum adiabatic temperatures of up to 1910 K 
[10] for the nickel and aluminium system, an efficient energy transfer into the reactive system before 
and after the initiation is possible with electromagnetic radiation. Microwaves at a frequency of 
2.45 GHz interact in an advantageous way with reactive systems and allow rapid and homogeneous 
heating [11]. 

Reactive powder materials, such as metallic particles, are commonly used in the field of 
combustion synthesis. For joining applications, a specific type of reactive systems has been developed. 
The so-called reactive multilayer systems consist of hundreds of alternating layers of the reactants 
[12]. However, due to their brittle nature as well as stability and handling issues [13] they are 
primarily suitable for joining planar or slightly curved surfaces. Reactive powder materials represent a 
more flexible alternative. As each particle contains at least two reactants, reactive particles can be used 
as an adaptable heat source. Figure 1 shows different intrinsic structures of reactive particles. 
 

 

 

Figure 1. Scanning electron micrograph images of reactive particles with an intrinsic 
a) core-shell and b) lamellar structure. 

 
Reactive particles with a lamellar structure are usually synthesised via ball milling [14]. A less 
common method is to shred reactive multilayer systems. Electroless [15] and electrochemical [16] 
plating processes of metal particles are efficient routes to obtain core-shell structures. As the size, 
shape, and stoichiometric ratio of the reactants are adjustable through the synthesis and significantly 
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influence the activation and reaction behaviour and thereby the released energy, reactive particles 
provide a customisable heat source for a wide range of joining applications. 

1.2. Interactions between adhesives, additives, and microwaves 
Epoxy resins are used in various ways in production engineering, e. g. as surface coating, fibre-
reinforced composite, and as highly relevant adhesive [17]. In this paper, the term epoxy resin refers to 
both the prepolymer with the reactive epoxy groups as well as the cured resin. Reactive epoxy groups, 
also denoted as oxirane, are able to form three-dimensional molecular networks with good mechanical 
strength as well as high temperature and excellent environmental resistance [18]. The curing agent 
plays a decisive role as it does not only initiate the reaction, but also determines the reaction 
mechanism and the resulting characteristics of the cured resin. Depending on the formulation of the 
single or two part epoxy resin, heat curing is used to initiate or additionally promote the chemical 
reaction. The major challenges of processing epoxy resins are long curing times, non-uniform 
polymerisation, and supplementary post-curing in order to complete the cross-linking of uncured 
areas. 

An alternative and industrially established approach is using microwaves for curing polymers. 
Reduced thermal gradients and a homogeneous fast energy transfer directly into the matter are major 
advantages of microwave processing compared to the conventional heat transfer modes via 
conduction, convection, and radiation in an oven [19]. However, effective microwave curing is a 
demanding challenge as it depends on the formulation of the resin, the uniformity of the 
electromagnetic field, the operation and dimensions of the microwave oven, and the arrangement of 
the sample [17]. Nevertheless, comparative studies on thermal and microwave curing with different 
curing agents demonstrated the enhancement of reaction rates and a higher degree of curing when 
using microwaves [20]. Moreover, reaction mechanisms strongly depend on the operation mode of the 
microwave (pulsed or continuous [21]) and deviate from conventional heating [22]. 

The formulation of the epoxy resin and the resulting dielectric properties, particularly their change 
during the polymerisation [19], are of great importance for microwave curing as they determine the 
interaction with the electromagnetic field. Furthermore, the integration of additives into the epoxy 
resin is a sophisticated possibility to further enhance the absorption of electromagnetic energy. 
Microwave curing of epoxy resins filled with nanoscaled ferrites [23], silicon carbide nanoparticles 
[24], multi-wall carbon nanotubes [25], and fly ash [26] confirmed an efficient energy transfer into the 
composite and resulted in a considerable shortening of the curing time compared to conventional 
heating. In addition, energy can be directly transferred into the joint without damaging temperature-
sensitive joining partners. Consequently, electromagnetic waves as well as additives have a positive 
effect on the curing process. As the use of reactive particles as an innovative additive in epoxy resins 
and the curing with microwaves have not yet been studied, this research aimed at investigating the 
resulting interactions. 

 Experimental setup and materials 
In order to evaluate the cause-effect relationships between the reactive particles, the adhesive, and the 
microwave energy, various studies were conducted. First, curing times of different two part epoxy 
resins with varying quantities of reactive particles were investigated. Further knowledge about the 
influence of different quantities of other additives in two part epoxy resins and microwave power was 
gained by using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The 
findings obtained by that formed the basis for the preparation and the analysis of lap joints. 

2.1. Preparation and analysis of the epoxy resin 
The two part epoxy resin LOCTITE EA 3425 (Henkel AG & Co. KGaA) was applied with a manual 
dispensing gun and mixing tubes. Additives included reactive nickel-aluminium particles with a 
lamellar structure (Indium Corporation), manufactured by cold rolling and subsequent shredding of the 
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multilayer system, aluminium powder (New Materials Development GmbH, 6.9 µm, 99.7 % purity), 
and carbon black powder (P-1500, PENTACARBON GmbH). All materials were used as received. 

The thermal analyses were carried out with instruments and crucibles by TA Instruments. DSC 
measurements with the thermal analyser Q2000 required Tzero aluminium pans and Tzero hermetic 
aluminium lids as sample holders. The heating rate was adjusted to 10 K/min and the maximum 
temperature to 433.15 K. For TGA measurements, platinum sample pans (100 µl) were used as 
crucibles in the thermal analyser Q5000SA. The heating rate was again set to 10 K/min and the 
maximum temperature to 873.15 K. Argon was used for both analysis methods. 

2.2. Experimental setup for microwave curing 
Initial curing experiments with reactive particles and two part epoxy resins were performed in a 
domestic microwave oven (HMT75M421, Robert Bosch Hausgeräte GmbH), which is widely used in 
scientific research [17] and is hereafter referred to as configuration I. For further studies, an 
experimental setup, which is denoted as configuration II, with a magnetron operating at a frequency of 
2.45 GHz (MH2000S-215BB, Muegge GmbH) and a continuous output power was used. All samples 
were placed on the rectangular waveguide as illustrated in Figure 2. 
 

 

Figure 2. Scheme of the microwave curing process in configuration II.  
 
In order to guarantee a homogenous microwave energy input into the adhesive and the additives, the 
joining partner facing the rectangular waveguide should not significantly interact with the 
electromagnetic field as this may result in unintended absorption or thermal damage. Therefore, lap 
joints with an overlap length of 12.5 mm consisting of a metallic and a polymer sheet as well as of two 
polymer sheets were studied. Dimensions of all test specimens for joining experiments were 
100 x 25 x 2 mm according to DIN EN 1465. 

2.3. Preparation and analysis of lap joints 
Polypropylene (PP-H, Technoplast v.Treskow GmbH) was chosen as the polymer joining partner due 
to its bondability with two part epoxy resins and a relatively low interaction with microwaves. 
Moreover, the surface treatment of polypropylene is relatively simple compared to chemical etching 
processes. After rinsing with isopropyl alcohol and ultrasonic cleaning, an atmospheric-pressure 
plasma, generated by the Openair FG5001 plasma generator (PlasmaTreat GmbH), was used for the 
surface treatment of the polypropylene samples. Suitable settings of the plasma generator were 
determined by contact angle measurements (Contact Angle System, DataPhysics Instruments GmbH) 
and are listed in Table 1. 

Aluminium sheets (EN AW-2017-A, Bikar-Metalle GmbH) were prepared by rinsing with 
isopropyl alcohol and ultrasonic cleaning. The distance between the joining partners was ensured by a 
stainless steel wire (0.20 mm, Advent Research Materials Ltd.) and a bracket. This device was made 
out of Teflon (PTFE virginal unfilled, KTK Kunststofftechnik Vertriebs GmbH) to avoid unintentional 
interaction with the electromagnetic field and adhesion of the epoxy resin. 
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Table 1. Parameters for the plasma treatment 
of polypropylene sheets. 

parameter value 
travel speed of the nozzle 15 m/min 
distance 10 mm 
number of passes 5 

 
The analysis of the manufactured lap joints was carried out on the basis of tensile strength tests with 
the single-screw tensile testing machine Z100 (ZwickRoell GmbH & Co.KG) and a speed of the 
crosshead displacement of 60 MPa/s. 

 Results and discussion 
In the following sections, three different studies are presented. In the first test series, the potential of 
reactive particles as an advantageous additive in two part epoxy resins was evaluated. Second, the 
influence of different additives, of varying quantities of the former, and of microwave power is 
discussed on the basis of the thermal analysis results. Finally, suitable parameter settings were derived 
from the previously generated knowledge and used for joining. 

3.1. Influence of reactive particles on curing times 
The initial feasibility study was carried out in configuration I with varying quantities (0 wt.-%, 
5 wt.-%, 10 wt.-%, 15 wt.-%) of reactive particles. The microwave power was set to 90 W, 180 W, 
and 360 W. Curing times were determined on the basis of five samples by indentation tests performed 
at regular intervals at the edges and in the centre of the sample. The results are shown in Figure 3. 
 

 

Figure 3. Curing times depending on the microwave power and the quantity 
of reactive particles. 

 
It becomes obvious that both increasing microwave power and the presence of reactive particles 
significantly reduced curing times. As a reference, curing the two part epoxy resin LOCTITE EA 3425 
at room temperature takes 24 hours according to the technical data sheet of the manufacturer. The 
values of the standard deviations demonstrate the good repeatability and range between 1.1 and 0. Due 

Microwave power in W →

90 180 360

C
ur

in
g 

tim
e 

in
 m

in
 →

0

2

4

6

8

10

12

14

0 wt.-%
5 wt.-%
10 wt.-%
15 wt.-%
std. dev.



WTK

IOP Conf. Series: Materials Science and Engineering 480 (2019) 012011

IOP Publishing

doi:10.1088/1757-899X/480/1/012011

6

 
 
 
 
 
 

to the inverse temperature profile [27], curing always started in the centre of the sample. A higher 
microwave power than 360 W resulted in a change of colour of the adhesive and in a significant 
thermal damage. Furthermore, partial sedimentation of the reactive particles could be observed at 
longer curing times, which should be avoided for homogeneous cross-linking. This might have also 
been the reason for reacted and unreacted particles within the epoxy resin, which were detected with 
scanning electron microscopy as illustrated in Figure 4. However, it is important to note that it is not 
intended to release the maximum possible energy of the reactive particles since this would severely 
damage the epoxy resin. Therefore, the energy input and the heating rate, which are determined by the 
microwave power, should enhance exothermic intermetallic reactions, such as solid state diffusion, 
and phase transformations only to a limited extent. 
 

 

 

Figure 4. Scanning electron micrograph images of a) reacted particles with a relatively 
homogeneous nickel aluminide structure and b) unreacted particles with lamellas 
consisting of nickel (light grey) and aluminium (dark grey). 

3.2. Results of thermal analyses 
The second series of experiments included DSC and TGA measurements in order to investigate the 
polymerisation of the epoxy groups as well as the degree of cross-linking within the polymer network. 
Figure 5 shows the DSC curves for three different additives (10 wt.-%) compared to an unfilled 
reference on the basis of two samples. 

The detected heat flow clearly indicates the exothermic polymerisation of the two part epoxy resin 
in all tested samples. Moreover, it can be derived that the three additives influenced the released 
enthalpy of the reaction. A comparison between the DSC curves reveals that the highest enthalpy of 
reaction is obtained for the unfilled reference sample, which does not contain any additional additive. 
The second highest enthalpy of reaction is observed for reactive particles. Apparently, these absorb a 
certain amount of energy, provided by the DSC oven, but do not significantly contribute to the overall 
enthalpy of the cross-linking reaction. Due to the relatively low heating rate, it is assumed that 
primarily solid state diffusion processes took place. 

The samples for the TGA measurements were all cured in configuration II. In order to define the 
minimum and maximum microwave power, when operating with a continuous mode, curing times of 
unfilled reference samples were compared at first. By this means, thermal damage of the epoxy resin 
should be prevented. The microwave power was varied between 100 W and 200 W with 25 W 
intervals and curing times were tested as described before. 

As in configuration I, curing times could be significantly reduced with increased microwave power. 
Curing at 100 W took approximately 16 min, while a microwave power of 200 W required 3 min for 
hardening. When comparing the results of configuration I (12 min at 90 W, 6 min at 180 W) with 
configuration II (16 min at 100 W, 3 min at 175 W), it can be assumed on the basis of the state of the 
art (see [17]) that the mode of operation had an influence on the polymerisation. However, curing at 
360 W was not possible as significant thermal damage appeared at microwave powers above 200 W. 
Therefore, 200 W was chosen as maximum curing power for the epoxy resin LOCTITE EA 3425. 
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Figure 5. DSC curves of the two part epoxy resin with reactive particles, 
aluminium, and carbon black as additives and an unfilled reference. 

 
TGA measurements of reference samples without additional additives were used to examine if post-
curing at room temperature appeared a few minutes, 24 hours, and 48 hours after microwave 
processing in configuration II. 

Almost identical TGA curves and degradation temperatures indicated that the samples were fully 
cured. The last set of experiments focussed on the interaction with the electromagnetic field and the 
quantity of the additive. Samples with 5 wt.-%, 10 wt.-%, and 15 wt.-% were cured at 200 W for 
3 min. Figure 6 shows the corresponding TGA curves on the basis of two samples. 

 

 
Figure 6. TGA curves of the two part epoxy resin with varying quantities of 
reactive particles and carbon black cured at 200 W for 3 min. 
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Due to the strong interaction of carbon black with the microwaves, samples with quantities above 
10 wt.-% were significantly damaged. Therefore, the quantities for carbon black were reduced 
(3 wt.-%, 6 wt.-%, 10 wt.-%) in order to avoid evaporation of chemical components of the 
formulation. In configuration I, microwave processing with higher quantities of carbon black and 
microwave power was possible (see Figure 3). This result again highlights the significant influence of 
the microwave chamber and the operation mode. In contrast to reactive particles, TGA curves for 
carbon black were very similar to each other. 

With aluminium or reactive particles as additive, no thermal damage was observed during the 
curing process, which could also be confirmed by the corresponding TGA curves. Identical quantities 
of the two metallic additives led to comparable TGA curves, which increasingly converged with 
reduced quantities within the epoxy resin. The comparison of the degree of cross-linking reveals that 
the samples with reactive particles exhibit lower degradation temperatures, which could be attributed 
to a too strong (pre-damage) or a too weak interaction with the electromagnetic field. 

As a conclusion, it can be stated that the combination of microwave processing and reactive 
particles as additives enhances polymerisation and reduces curing times. 

3.3. Results of tensile strength tests 
As it was expected that the aluminium sheets would absorb and reflect a certain amount of the 
introduced microwave energy, first experiments aimed at scrutinising the transferability of the 
previously obtained outcomes to joining. 

With the same settings as in the aforementioned studies (200 W for 3 min, configuration II) it was 
not possible to cure a reference sample consisting of an aluminium sheet, a polypropylene sheet, and 
the epoxy resin. Increasing the curing time and the microwave power led to the curing of the adhesive. 
Though the heating of the aluminium specimen took place to such an extent that a clear distinction 
between the interaction of the epoxy resin with the electromagnetic field and curing through thermal 
conduction was not possible anymore. In order to unambiguously evaluate the influence of the 
microwaves on the epoxy resin, lap joints of two polypropylene sheets were prepared and analysed. 
Nevertheless, the microwave power had to be adjusted to 300 W to obtain a curing time of 20 min. 
Figure 7 displays the obtained results of the strength tests on the basis of three samples. 
 

 

Figure 7. Tensile strength of polypropylene lap joints with varying quantities of 
reactive particles, aluminium powder, and carbon black as additives. 
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In contrary to the metallic particles, carbon black strongly interacted with the electromagnetic field 
above a quantity of 5 wt.-% and led to a relevant damage after a few minutes. For comparable results, 
the amount was reduced to 1 wt.-% and 3 wt.-%. The samples obtained by that were curable without 
defects. 

Adhesive and cohesive fractures, hybrid forms, and failure of the base material were observed after 
the strength analyses. The high standard deviations impede a clear conclusion, which additive and 
which quantity is advantageous for joining. Additional studies should be carried out to investigate the 
cause-effect relationships and to further confirm the potential of reactive particles as additive in epoxy 
resins. 

 Conclusions 
Epoxy resins are widely used in academia and industry due to their excellent thermo-mechanical 
characteristics. However, their long curing times represent a major disadvantage. Elaborated studies 
have shown that microwave processing and the use of additives are promising approaches to 
significantly reduce curing times and to influence the polymerisation in an advantageous way. 
Reactive particles, which undergo a self-sustaining exothermic reaction after an external energy input, 
represent an adaptable heat source for thermal joining applications. As they are also able to interact 
with electromagnetic fields at a frequency of 2.45 GHz, the use of reactive particles with a lamellar 
structure as a new, innovative additive in a two part epoxy resin was studied. The integration of 
reactive particles led to a considerable reduction of curing times. DSC and TGA measurements with 
no or further additives (aluminium and carbon black powder) revealed that the operation mode of the 
microwave oven strongly influenced the interaction between the epoxy resin, the additive, and the 
electromagnetic field. On the basis of these findings it was possible to fabricate composite joints. As 
the joining partners also interacted with the electromagnetic field to an essential extent, further studies 
on microwave processing of epoxy resins and reactive particles are required to enable an industrial 
usage. 
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