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Abstract. To lower the operating temperatures of solid oxide fuel cells (SOFCs), A 
new A-site-deficient Ti-doped SrCoO3-δ (SCT) are synthesized by a modified Pechini 
method and used as new highly active and stable cathode materials for intermediate-
temperature SOFCs. The phase structure and electrical, thermal, and electrochemical 
properties of the SCT samples are evaluated. A phase transformation of SrCoO3-δ 
from hexagonal to cubic perovskite structure occurred at room temperature by the 
substitution of Ti. A lower TEC value of the SCT oxide was observed with increasing 
the Ti doped content and A-site deficiency. NiO-SDC-supported single cells with 
various SCT as cathode materials were operated at intermediate temperatures using 
humidified H2 as fuel and the static air as oxidant, respectively. Significant improved 
electrochemical performance for the A-site-deficient SCT sample was observed. An 
open-circuit potential of 0.83 V and the max power density of 745 mW cm-2 were 
achieved at 650 ℃ . The experimental results indicated that the A-site-deficient 
Sr0.95Co0.9Ti0.1O3-δ cubic perovskites are promising candidates as cathode 
materials for IT-SOFCs. 

1. Introduction 
As future solid-state energy conversion devices, solid oxide fuel cells (SOFCs) have gained great 

attention owing to its good fuel flexibility, low pollution, high conversion efficiency, and excellent 
system compatibility [1-4]. The main issues for the commercialization of SOFCs are high operating 
temperature (800-1000 ), the resulting functional materials limitations, and operating complexities 
[5-7]. Decreasing the operation temperature to an intermediate-to-low temperature (400-700 ), 
results in lower systems costs and performance degradation rates, as well as fast start-up and shutdown 
cycles [8, 9]. However, the oxygen reduction reaction (ORR) activities of cathode dramatically 
increase as the temperature decreased [1, 10-12]. Therefore, it is both important and necessary to 
develop the cathode materials with stable and high catalytic activity towards ORR for intermediate-
temperature solid oxide fuel cells. 

Comparing with conventional electronically-conducting LaxSr1−xMnO3−δ (LSM) perovskite 
cathodes, mixed ionic and electronic conductors (MIECs) [3, 4, 9, 13] with the benefits of high 
catalytic activity and good conductivity can significantly extend the active sites of  cathode from triple 
phase boundaries (TPBs) to the entire surface and bulk of the porous cathode, which can enhance the 
electrochemical performance for SOFCs [4, 7, 14-16]. As one of the MIECs with high catalytic 
activity, SrCoO3-δ is a polymorph with three phase, orthorhombic brownmillerite phase (RT-653 ), 
hexagonal phase (653-920 ) and cubic perovskite phase (above 920 ) [5, 8, 10, 12, 14-19]. Among 
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these three phase structures, the doped SrCoO3-δ cubic perovskites exhibit the highest ORR activity 
and conductivity at intermediate temperatures [19]. However, the stability performance, the chemical 
and thermal compatibility with other components, and the CO2 tolerance of doped SrCoO3-δ have 
made it difficult to deal with the problems in SOFC devices [7, 8, 10, 12, 20]. 

Introducing the proper amount of A-site deficiencies into the lattice of perovskite can significantly 
enhance the electrochemical performance of SOFC cathode materials [21]. A-site deficiency in 
perovskites can form a large amount of oxygen vacancies, promote the ORR and facilitate oxygen ion 
diffusion within the cathode materials [22-28]. For example, A-site deficiency in LSM cathodes with 
higher chemical stability could result in a decrease in both electrode interfacial resistance and 
polarization loss [1]. A-site deficiency in La1-xSrxFeO3−δ (LSF) as well as La1-xSrxCo1-yFeyO3−δ 
(LSCF) cathodes could significantly improve the electrochemical performance due to a lowering of 
the surface segregation of La and Sr [2, 22, 23]. A-site deficiency in Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) 
can lead to a decrease in the thermal expansion coefficient (TEC), which makes the cathode more 
compatible with the electrolyte [28]. In addition, A-site deficient Sr0.95Co0.9Nb0.1O3-δ cathode with 
enhanced CO2 resistivity not only shows high ORR activity at low temperatures, but also exhibits 
excellent stability and compatibility with electrolyte [21].  

2. Experimental 
2.1 Synthesis 

The Sr1-xCo1-yTiyO3-δ (x=0, 0.05; y= 0.05, 0.1) oxides were synthesized via a modified pechini 
method. Commercial Sr(NO3)2, Co(NO3)2·6H2O and n-butyl titanate, and citric acid were used as the 
raw materials. The exact concentration was confirmed through a chemical titration method. The molar 
ration of citric acid and metal was 1.5:1. After the combustion process, the as-prepared cathode 
powders were calcined at 950  for 3 h in air to obtain fine black phase-pure powders. 
SrCo0.95Ti0.05O3-δ, SrCo0.9Ti0.1O3-δ and Sr0.95Co0.9Ti0.1O3-δ were named as SCT-1, SCT-2 and SCT-3, 
respectively. In addition, the Sm0.2Ce0.8O1.9 (SDC) powders were synthesized by the same method 
with the raw materials Sm(NO3)3and Ce (NO3)3  at a proper molar ration (1.5:1) and then calcined at 
700  for 2 h. 
2.2 Sample preparation 

The synthesized SCT powders were pressed into bars (40 mm×5 mm×2 mm) with the pressure of 
220 MPa followed by sintering at 1200oC for 5 h in air for the measurement of TEC and electrical 
conductivities. Anode-supported single cells of NiO-SDC/SDC/SCT-SDC (70 wt.% : 30 wt.%) were 
fabricated by a dry-pressing/co-sintering process. NiO + SDC + Starch mixture (60 wt.% : 40 wt.% : 
20 wt.%) were pre-pressed at 200 MPa as substrates. Then the loose SDC powders were uniformly 
distributed onto the prepared anode substrates, co-pressed at 300 MPa and sintered finally at 1400oC 
for 5 h in air to form the dense electrolyte. The doped SrCoO3-δ slurry was then painted on dense SDC 
membrane, and calcined in air at 1000oC for 3 h to form a tri-layer  NiO-SDC∣SDC∣SCT-SDC cell. 
The active cathode area was 0.237 cm2.  

3. Results and discussion 
Fig. 1 shows the room-temperature XRD patterns of the SCT samples calcined at 950 oC for 3 h in 

air. Obviously, there is a significant phase transformation between the undoped SrCoO3 and SrCo1-

yTiyO3-δ (SCT) samples, which show a hexagonal phase structure and a cubic perovskite structure, 
respectively [19, 20]. This means that the Ti dopant can stabilize the cubic perovskite phase at high 
temperature, even for the A-site deficient perovskite Sr1-xCo1-yTiyO3-δ samples [4, 12, 15]. To obtain 
pure phases of A-site Sr2+-deficient Sr1-xCo0.9Ti0.1O3-δ samples and determine the upper limit of Sr2+-
deficiency, different compositions, i.e. Sr1-xCo0.9Ti0.1O3-δ x=0.05, 0.10 and 0.13 were synthesized and 
characterized. The result indicates that the highest Sr2+-deficiency content in SCT was 0.1, and higher 
content x= 0.13 will generate some impurity phase.  
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Fig. 1 Room temperature XRD patterns of the SCT samples calcined at 950  for 3 h. 

Recent studies [6, 10, 13, 19, 20] make a direct connection between the stability of SrCoO3-based 
cathode and the valence of the doping cation, which means that variation in the oxygen 
nonstoichiometry, 3-δ, upon cation doping should directly relate to the cubic perovskite stability. 
Based on the simple point defect model expressed in Kröger-Vink notation [4, 9, 28], we can 
qualitatively investigate the influence of the A-site deficience (Sr) and B-site doping (Ti) on the 
oxygen nonstoichiometry. 

Fig. 2 shows the thermal expansion curves of the SCT samples between RT-1000 oC in air. The 
SCT samples show linear expansion during the operate temperatures. The SCT-1 sample shows an 
obvious shrink at approximately 900oC due to the amount of lattice oxygen escape at high temperature. 
However, the SCT-2 and SCT-3 samples do not exhibit the same phenomenon at 900oC due to Ti 
contents increased in the lattice reduced concentrations of oxygen vacancies. The average thermal 
expansion coefficient (TEC) of SCT-1, SCT-2 and SCT-3 are 21.5×10-6, 18.2×10-6 and 17.2×10-6 K-1, 
respectively. Obviously both Ti doping and A-site deficiency cause a considerable reduction in the 
TEC value of SCT cathode, which is more promising for the thermal compatibility of cell components 
[2, 13].  
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Fig. 2 The SCT samples thermal expansion curves tested at RT-1000  in air. 
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Fig. 3 shows the electrical conductivities of SCT samples tested at 250-700 oC in air. The function 
of electrical conductivities dependence on the temperatures of all the samples increases first and 
followed by a decrease. This may be attributed to an increase in formation of small polar on hole 
conductors in competition with a decrease in the numbers of charge carriers due to charge 
compensation [8, 27]. The conductivity values of the samples achieved the max conductivities values 
of 282-478 S cm-1 at 400 oC. The sample SCT-1 has the highest electrical conductivity about 478 S cm-

1 at 400 oC. And the electrical conductivity decreased with the substitution of Ti (SCT-2 or SCT-3). 
However, considering the higher stability of SrCoO3-δ based cubic perovskites with higher Ti dopant, 
SrCo0.9Ti0.1O3-δ cathode is more promising for SOFC with good long-time stability [20]. It can be seen 
from the Fig. 3 b and c, the A-site deficiency sample with the same Ti doped content had a lower 
electrical conductivity values at low temperature (250-550 oC) but a higher one at middle temperature 
(550-700 oC). The conductivity of all the SCT samples is greater than 200 S cm-2 between 250 oC and 
700 oC, which is acceptable for the application of cathodes for IT-SOFCs [2, 3]. 
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Fig. 3 Temperature dependence of the electrical conductivity of the SCT samples. 

To evaluate the electrochemical performances, the single cells were fabricated with various SCT 
samples as cathode materials, these cells were tested at 450-650 oC. The current densities dependence 
of voltages and power densities curves are shown in Fig.4. The open circuit voltages (OCVs) at 650 oC 
were 0.85, 0.82 and 0.83 V for the NiO-SDC-supported single cells with SCT-1, SCT-2 and SCT-3 
cathode, respectively. In addition, the cell voltage of each single cell decreased linearly with current 
densities. The maximum power densities at 650 oC were 721, 641 and 745 mW/cm2 for the cells with 
SCT-1, SCT-2 and SCT-3 cathode, respectively. 
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Fig. 4 Electrochemical performance data of the Ni-SDC-supported single cells were fabricated with 

different SCT cathodes (a: SCT-1, b: SCT-2, c: SCT-3). 
Comparison with SCT-1 and SCT-2 as cathode materials, the power density of SOFCs decreased 

with the increasing of Ti content, which is agree with previous reports. The single cell with SCT-3 
oxide cathode achieves a peak power density of 745 mW/cm2, which is higher than that of any other 
with cathodes. Owing to the same fabrication technology and the same components of cells, the 
difference of output performance between several cells is attributed to the internal eletroechical 
properties of cathode materials. We can see from Fig.3 that the electrical conductivity of SCT-3 
sample is lower than SCT-1. Hence, the higher performance could be attributing to the ionic 
conductivity in the cathode due to the A-site deficiency. This result demonstrates that Sr deficiency at 
the A site has a great effect on the properties of electrochemical performances.  

4. Conclusion 
The A-site deficiency and Ti-doping on B-site of SCT as cathode materials for IT-SOFC have been 

synthesized to enhance the performances. The cubic perovskite structure was obtained after the 
substitution of Ti. A lower TEC value of the SCT oxide was observed with increasing the Ti doped 
content and A-site deficiency. The highest content of Sr2+-deficiency of S1-xC0.9T0.1 was 0.1 which has 
no change on the perovskite structure. The A-site-deficient SCT-3 exhibits the lowest polarization 
resistance 0.029Ω cm2 at 650 oC. Ni-SDC-supported single cells with various SCT as cathode 
materials were operated at intermediate temperatures using 97%H2-3%H2O as fuel and the static air as 
oxidant, respectively. Significant improved electrochemical performance for the A-site-deficient 
Sr0.95Co0.9Ti0.1O3-δ sample was observed. An open-circuit potential of 0.83 V and the max power 
density of 745 mW cm-2 were achieved at 650 oC. The experimental results showed that the A-site-
deficient Sr0.95Co0.9Ti0.1O3-δ cubic perovskites are promising candidates as cathode materials for IT-
SOFCs. 
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