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Abstract. A new cryogenic radiator with high emissivity under 50K has been designed,
fabricated and tested for space cryogenic missions in which high emissivity radiative cooling
at low temperature is proposed. In this design, a cavity is introduced in a cavity surface
structure to make a low reflectivity surface at an infrared wavelength (ranging from a few tens
of µm up to 1000 µm) without any black coating resulting in contamination and low reliability
at low temperature. As proof of a concept demonstration, a triple-cavity surface structure was
designed, and three types of test pieces with different number of surface cavities were measured.
Low temperature emissivity measurement using the calorimetric method, revealed that higher
emissivity was successfully obtained with the test piece having a higher number of cavities.

1. Introduction
Radiative cooling at lower than 77 K is major means for space cryogenic missions. In particular,
the Space Infrared telescope for Cosmology and Astrophysics (SPICA), proposed as an infrared
observatory is transfered into a halo orbit around the second Lagrangian point (L2) in the Sun-
Earth system, which enabling us to use effective radiant cooling in combination with mechanical
cooling in order to cool a 2.5m IR telescope as well as scientific instruments below 8 K. High
emissivity radiative cooling is also proposed at around the telescope shields, along with a V-
groove between 40 K and room temperature [1]. LiteBIRD – the cosmic microwave background
(CMB) polarization observation satellite – is also needed to cool down the mission instruments
as well as telescopes by about 5 K at L2, with a thermal design similar to that of SPICA [2].

There are several kinds of candidates to realize a high emissivity cryogenic radiator in space
at lower than 77 K. One of the most common methods is to apply a black coating using thick
black paint. This method is simple, easy to assemble, and has few restrictions regarding the
shape on the radiator. High radiative emissivity was obtained with the black paint known as
Ball IR BlackTM (or BIRBTM) that was used for the cryogenic radiator of the James Webb
Space Telescope [3]. However, there are still concerns about contamination and quality control
for the design of each spacecraft. An open honeycomb with thin black paint has a good heritage
in the Planck mission [4][5], and is now being developed at JAXA [6]. Other methods, such as
one using carbon nanotubes (CNT) [7] are also proposed and being developed.
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Figure 1. Enhanced emissivity with a cavity from ϵs to ϵa (left) and concept
of a cavity in a cavity cryogenics radiator (right).

Figure 2. An expected apparent
emissivity ϵa higher than 0.9 from ϵs
by quadruple cavity in cavity with 1.5
< L/R < 4.

This paper introduces a new concept of a cryogenic radiator in space with the sample
emissivity being measured at between 20 K and 50 K. According to new concept, a cavity
in a cavity three-dimensional (3D) structure is proposed with the possibility of providing high
radiative emissivity close to 1 even at low temperature (< 20 K) without any coatings, and with
the emissivity having no dependence on temperature due to a mutltiple cavity effect.

2. Concept of a cavity in a cavity cryogenic radiator
When there is a hole structure as shown on the left side of Figure 1, apparent emissivity ϵa can
be higher than surface emissivity ϵs due to the cavity effect, with which most of photons emitted
by the surface as well as photons incoming a hole structure have more than one reflection. In
such a case, there is a possibility of a multiple cavity effect when a smaller cavities are introduced
in a large cavity structure, as shown on the right side of Figure 1. A cavity effect depends on
an aspect ratio L/R (hole depth / hole radius in case of a circular cylinder)[8]. Figure 2 shows
the relation between the aspect ratio L/R and the apparent emissivity with various surface
emissivities. A diffuse reflection is only considered in the figure. For instance, emissivity higher
than 0.9 can be expected by quadruple cavities in a cavity with 1.5 < L/R < 4 (red circle), even
if surface emissivity ϵs is only 0.1 (a rough metal surface).

The emission wavelength range of blackbody radiation becomes longer and the radiative
emissivity of a black-painted surface decreases at cryogenic temperatures lower than 50 K [9].
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When a black paint having a few mm thickness is applied to maintain high emissivity at low
temperature, it is critical to mitigate the risks of an outgas and contamination, as well as
quality control to prevent thermal cracks in a spacecraft design. Even when a surface structure
using one cavity effect such as the use of an open honeycomb, a black coating is needed on the
surface. A radiator with a CNT and a metal formed on the surface also raises a concerns about
contamination.

In the concept of a cavity in a cavity cryogenic radiator, high radiative emissivity (close to
1) is expected at cryogenic temperature without any coating or surface finishing. On the other
hand, a hole size must be larger than the wavelength to be considered for a blackbody radiation
spectrum at low temperature. Moreover, the mass necessary to make the structural design is
also critical.

3. Sample results and discussion

Figure 3. Cross section of the designed triple-cavity structure (left) and samples (right).

As the first trial, the triple-cavity structure has been designed and fabricated by adapting
additive manufacturing using an Al-alloy AlSi10Mg. Prior to the design, a cavity effect with
different hole shapes (i.e., cylinder, hexagon pole, square pole, triangle pole) were compared
as a function of aspect ratio using the thermal model, and it was confirmed that the function
can be the same by introducing the ratio of surface area in the hole’s Asurface and opening area
Aopen (Asurface/Aopen). Cavity effects with a single-pyramid and a three-pyramid shape were
also estimated, and it was concluded that the cavity effects using these structures are slightly
lower compared to the cavity effect with a cylinder at low Asurface/Aopen, while peak emissivity
is the same.

The left side of Figure 3 shows a cross section of the designed triple-cavity structure. As a
prior condition, it was designed for a sample height of < 20 mm by considering the feasibility
of integrating it on a spacecraft radiator. Given the processing precision of about 0.2 mm in
the additive manufacturing, 0.2 mm was used to estimate the aperture efficiency as well as to
design each aspect ratio and each opening diameter. The pyramid shape was chosen for the
first cavities, with the three-pyramid shape for the second and third cavities. The designed
aspect ratio and opening diameters are also shown on the right side of Figure 3, and Table 1
lists the main parameters of the three samples. The samples having only single and double
cavities were also fabricated to compare these emissivities with the triple-cavity sample. The
opening diameter of the smallest cavity was determined to be 0.5 mm for the cavity effect with
a maximum wavelength of 1000 µm. As the production of samples using the manufacture had
a limited data transfer rate, triple cavities were only fabricated on 23 mm × 23 mm.
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Table 1. Main parameters of the samples.

Size Structure Expected emissivity

No.1 50 mm × 50 mm single cavity 0.26 (ϵs 0.1), 0.40 (ϵs 0.19)
No.2 50 mm × 50 mm double cavity 0.44 (ϵs 0.1), 0.60 (ϵs 0.19)
No.3 23 mm × 23 mm triple cavity 0.68 (ϵs 0.1), 0.77 (ϵs 0.19)

(total size 50 mm × 50 mm )

Figure 4. The sample emissivities
measured by the low temperature
calorimetric experiment.

The low temperature emissivity of these samples was measured by using the calorimetric
method, as described in detail by M.Ando et al. [6]. The 4K-class GM cooler (4K-GM) is used
to provide an inner shield of ∼5 K in the vacuum chamber. The guard heater plate (GHP)
was used to reduce conductive heat loss from the samples, each of which was suspended from
the GHP by two Kevlar R⃝ wires. The GHP assembly was covered by the inner shield. The
sample temperature was regulated by a heater attached directly to each sample, and the GHP
temperature was also heater-regulated to maintain the difference in temperature with the sample
at lower than ±0.1 K. The conductive heat loss from samples in the experimental setup was
measured by another low temperature measurement with a low emissivity polished Al sheet
(50 mm × 50 mm, ϵs < 0.025), and then the cavity sample’s emissivity was estimated based on
the sample’s heater-regulated power after subtracting the conductive heat loss.

Figure 4 shows the measured emissivities of the three samples. The estimated error is
dominated by the systematic error and lower than 0.1 for No.1 and No.2. Higher emissivity
was obtained with sample No.2 (double cavity) than sample No.1 (single cavity) between 20 K
and 50 K. Furthermore, it is important that the dependence on temperature was low and the
result shows the main feature of cavity effects. These results suggest that the surface emissivity
of the Al alloy was about 0.2, which was assumed to be caused by the surface roughness. Higher
emissivity with sample No.3 (triple cavity) was expected, but it has a smaller radiative area and
provides a large error.

Another triple-cavity sample (No.4) was also assembled by adhesion using the stycast with
the four small samples to be measured. However, the measured emissivity was about 0.25 at
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20 K and about 0.45 at 30 K, and thus lower than that of sample No.1 (single cavity). The
adhesion to assemble sample No.4 may be weak, which provides very low thermal conductance.
Furthermore, there is possibility that the aspect ratio of the third cavity is much lower than
designed, as the design shape of triple cavity particularly the opening diameter (0.5 mm) is close
to the processing precision (of about 0.2 mm). The design must be improved for fabricating third
cavities correctly on a 50 mm × 50 mm sample, to obtain higher emissivity by a triple-cavity
structure.

As discussed above, the emissivity enhancement by multiple cavity effect of current design was
apparently restricted by the processing accuracy of the additive manufacturing. Hence, a higher
radiative emissivity would be predicted by the progress of the manufacturing development. On
the other hand, an alternative approach to manufacturing including cutting work should be
investigated. Then, a no-metal sample development must be also desireble since a mass is most
critical issue for the concept.

4. Conclusion
The multiple cavity effect with a 3D structure was proposed for a spacecraft’s cryogenic radiator.
It offers the possibility of achieving high emissivity close to 1 without any surface coating or
surface finishing, as well as easy fabrication after being designed just once. As proof of a
concept demonstration, the sample with a triple-cavity structure was designed and fabricated
by additive manufacturing. In the calorimetric measurement, higher emissivity was measured
with the double-cavity sample than with the single-cavity sample at between 20 K to 50 K.
There is a possibility of obtaining even higher emissivity with the triple-cavity sample, though
it entails large uncertainty. Therefore, the design must be improved to enhance the multiple
cavity effect of the new concept.

References
[1] Ogawa H, Nakagawa T, Matsuhara H, Shinozaki K, Goto K, Isobe N, Kawada M, Mizutani T, Sato Y,

Sugita H, Takeuchi S and Yamawaki T 2016 Proc. SPIE, 9904, Space Telescopes and Instrumentation 2016:
Optical, Infrared and Millimeter Wave vol 9904-82

[2] Hasebe T, Kashima S, Uozumi S, Ishino H, Utsunomiya S, Noda H, Mitsuda K, Sekimoto Y, Dotani T,
Matsumura T, Sugai H, Tsujimoto M, Imada H and Hazumi M 2018 Proc. SPIE, 10698, Space Telescopes
and Instrumentation 2018: Optical, Infrared and Millimeter Wave vol 1069864

[3] Franck R A, Gurule A P, Brinckerhoff P A, McCallan T R, Renbarger M and Brown A A 2016 46th
International Conference on Environmental Systems p 141

[4] Reix J M, Rideau P, Gavila E, Chambelland J P, Collaudin B, Passvogel T and Guillaume B 2010 AIP
Conference Proceedings vol 1218 pp 1520–1529

[5] Riti J B, Dubruel D, Nadarassin M, Martin P, Gavila E, Lasic T, Chambure D d and Guillaume B 2003 Proc.
SPIE, 4850, IR Space Telescopes and Instruments vol 4850 p 749

[6] Ando M, Tanaka K, Shinozaki K, Nishikawa I and Sugita H 2018 IOP Conference Series: Journal of Physics
submitted

[7] Mizuno K, Ishii J, Kishida H, Hayamizu Y, Yasuda S, Futaba D M, Yumura M and Hata K 2009 Proceedings
of the National Academy of Sciences of the United States of America vol 106 pp 6044–6047

[8] Sparrow E M, Albers L U and Eckert E R G 1962 Journal of Heat Transfer 84 73–79
[9] Shinozaki K, Sato Y, Sawada K, Ando M, Sugita H, Yamawaki T, Mizutani T, Komatsu K, Nakagawa T,

Murakami H, Matsuhara H, Takada M, Takai S, Okabayashi A, Tsunematsu S, Kanao K and Narasaki K
2014 Cryogenics 64 228–234


