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Abstract. Empirical compressor maps are a simple and reliable approach for heating
and cooling system designers to estimate compressor refrigerant mass flow rate and power
consumption quickly. These maps were used for a long time since most compressor
manufacturers build the maps with extensive test matrices, leading to good accuracy. However,
the situation changes when engineers extrapolate the maps to investigate the compressor’s
performance under extreme operating conditions such as for cold climate heat pump applications
or under conditions with system faults. Engineers are not confident on the exact uncertainty
of the extrapolation, and often claim that the inaccuracy of their studies is a result of
high extrapolation uncertainty. This paper presents a method to estimate the extrapolation
uncertainty due to the structure of the test matrix that trains the manufacturer maps and helps
the investigators to understand if the extrapolation is the main cause of their inaccuracy. To
verify that the method can estimate the uncertainty due to extrapolation, the study builds
10-coefficient compressor maps trained by different test matrices of the same size and different
operating points. The maps are used to estimate the compressor performance under different
operating points and their estimation uncertainties are compared. The results show that the
component of the uncertainty that depends on the structure of the test matrix is small at
operating conditions within the test matrix but grows significantly as the map is used to estimate
outputs further away from the operating conditions within the test matrices.

1. Introduction
Empirical compressor maps for positive displacement compressors, such as the 10-coefficient
polynomials outlined in ANSI/AHRI Standard 540 [1] and European Standard EN 12900 [2]
are widely used in academia and industry. These maps are trained with experimental data and
then used to calculate power input, mass flow rate, current, and compressor efficiency. However,
the maps contain squared and cubic terms of the inputs (suction and discharge dew point
temperature) and are therefore potentially inaccurate when used for extrapolation outside of the
training data range. Manufacturers often state an accuracy of ±5% for tabulated performance
data (e.g. [3] or [4]). This paper shows a method that estimates the resulting uncertainty for
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the 10 coefficient polynomial at a certain point other than the training data set.
This paper does not address interpolation between different speeds of variable speed compressors.
However, the shown methodology can be extended to predict the uncertainty of the outputs for
interpolating between fixed speeds rather than using different fixed speed compressor maps as
done by e.g. [5] and [6].

2. Linear regression
Finding the coefficients of the 10 coefficient maps can be treated as a linear regression
problem, with the evaporating and condensing temperature and their linear, squared and cubed
combinations being the independent variables ~x and the power consumption of the compressor
being the estimated dependent variable y. To better understand the uncertainty sources of
the model, a brief review of linear regression along with how this applies to the polynomial
compressor map is shown subsequently.

2.1. Review
Linear regression is used to estimate the parameters of a linear model for a system that might
have slightly nonlinear behavior. If we had the parameters ~βtrue for the true model that is the
best linear model to describe the actual system, we could use the independent inputs to our
model (~xT ) to calculate the true output ytrue up to an error ε caused by the difference between
model and system, e.g.

ytrue = ~xT ~βtrue + ε. (1)

Unfortunately it is not possible to obtain the true model, since it is not possible to obtain the
infinite number of input/output data points from the system. Therefore, we need to estimate the
model parameters to calculate an estimate of the output. To emphasize the difference between

the two models, a hat (ˆ) is used for the estimated values (estimated model parameters ~̂β and
estimated model output ŷ), and the estimated linear model is

ŷ = ~xT ~̂β. (2)

The parameters for the model can be estimated using measurement data. For non-weighted

reduction of the squares of the errors, it can be shown that the parameter vector ~̂β can be
calculated as

~̂β = (XT
trainXtrain)−1XT

train~ytrain, (3)

where the subscript train is used for training data. The training data input matrix Xtrain,
composed of input data vectors ~xtrain,i for each data point i is constructed as

Xtrain =
[
~xtrain,1 · · · ~xtrain,i · · · ~xtrain,n

]T
, (4)

where n is the total number of data points. The output training data vector is composed of
output values ytrain,i for each data point as

~ytrain =
[
ytrain,1 · · · ytrain,i · · · ytrain,n

]T
. (5)

The accuracy of the model, measured by the mean sum of square of errors σ, is

σ =

√√√√Σi(ytrain,i − ~xT ~̂β)
2

n− 1
. (6)
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2.2. Polynomial compressor map as linear regression problem

ANSI/AHRI Standard 540 [1] estimates the compressor power consumption ˆ̇W as

ˆ̇W = β̂1 + β̂2Tevap + β̂3Tcond + β̂4T
2
evap + β̂5TevapTcond + β̂6T

2
cond + β̂7T

3
evap+

β̂8T
2
evapTcond + β̂9TevapT

2
cond + β̂10T

3
cond,

(7)

where β̂i are the estimated model coefficients and Tevap, and Tcond are the evaporation and

condensing dew point temperatures. Referring to Eqn. (2), ˆ̇W takes the place of ŷ, the estimated

parameter vector ~̂β is composed of the β̂i, and the vector of independent variables that contains
the saturation temperature variables, ~x, is constructed as

~x =[
1 Tevap Tcond T 2

evap TevapTcond T 2
cond T 3

evap T 2
evapTcond TevapTcond T 3

cond

]T
.

(8)

3. Uncertainty of steady state measurements
The training data for compressor maps is obtained from steady state time series data. Steady
state time series data do not show any significant monotonic trends with time but rather shows
periodic and random fluctuations (noise) around an average value. The mean value a of the
measured variable can be defined as

a = ΣN
i=1

amea(ti)

N
, (9)

where amea(ti) is a discrete measurement of the variable at time step i, and N is the number
of measurements in a time series. Measurement devices have a time-independent uncertainty
often called zero-order uncertainty. The limited number of samples in combination with the
fluctuations of the variable due to environmental noise leads to the first-order uncertainty. Zero-
order uncertainty is typically provided by the manufacturer of the measurement device, such
as ±0.5K for T-type thermocouples, or 0.5% of the measured flow rate for Coriolis mass flow
meters. First-order uncertainty is not known in advance but rather needs to be approximated by
statistically analyzing the time series data of the steady state measurement. Taylor and Kuyatt
(1994)[7] give the overall measurement uncertainty as

∆a =

√
ΣN
i=1

(
∆amea(ti)

N

)2

+

(
tN−1,1−α/2

N

)2ΣN
i=1(amea(ti) − a)2

N − 1
(10)

where tN−1,1−α/2 is the statistic of the Student’s t-distribution with a degree of freedom of
N-1 and level at 1−α/2. The first part of the uncertainty is the sum of squares of the zero-order
uncertainty of each observation within the steady state measurement. The second part of the
uncertainty is given as the confidence interval of the average value at the level of 1 − α/2. In
practice, α is taken as 0.1, and a 95% confidence interval is usually used in the approximation.

4. Generating experimental results of steady state data with uncertainties from
compressor map data
In this paper, no real measurement data are taken for training data, and only ideal compressor
performance data from the manufacturers without uncertainty is available. In order to test the
uncertainty calculation of the compressor map output, a set of training data with uncertainties is
approximated from the ideal compressor performance data. If the ideal compressor performance
data are the true values of the measurement, its measurement value will be different because it is
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subjected to the zero-order uncertainty of the measurement device and the first-order uncertainty
of the noise of the measurement environment. Assuming that the uncertainty is the confidence
interval of the measurement value at a level of 1 − α/2 and the measurement value follows a
normal distribution with a mean value around the true value of the measurement, the standard
deviation of the normal distribution will be given by

σmea =

√
(∆azero−order(a = atrue))

2 + (∆afirst−order(a = atrue))
2

z1−α/2
(11)

where z1−α/2 is the z-normal distribution statistics given at a level of 1 − α/2. The
observations within steady state can then be approximated by running a random number
generator following a normal distribution with mean at the true value of a and standard deviation
at σmea multiple times. These values can then be analyzed with the method listed in the section 3
to calculate the value and uncertainty of steady state measurement.

5. Sources of uncertainty
Uncertainty of the compressor map output is the range where the true value of the output may
be relative to the map output. It consists of multiple components and can be grouped as follows:

• Uncertainty due to inputs

• Uncertainty due to training data

• Uncertainty due ot model random error

• Uncertainty due to outputs

5.1. Uncertainty due to inputs
Uncertainty due to inputs is the uncertainty propagated to the map output due to the uncertainty
in the inputs to the maps. The inputs to the map (evaporating and condenser temperature)
are usually obtained by converting pressure measurements to saturation temperatures with
refrigerant equations of state. Therefore the estimated saturation temperature contains
uncertainty from both the equation of state and the pressure measurement. The equation of
state of R22 estimates saturation pressure at an uncertainty of 0.2% [7]. When the equation of
state estimates an saturation temperature at a given pressure, this uncertainty is transformed
into a component of the uncertainty of the saturation temperature as shown in

∆Psat,EOS
Psat(T )

= 0.2% = 0.002 (12)

and

∆Tsat,EOS =

∣∣∣∣∂Tsat(P )

∂P

∣∣∣∣∆Psat,EOS , (13)

where ∆Psat,EOS is the uncertainty of saturation pressure as a result of uncertainty of the
equation of state, Psat(T ) is the saturation pressure from temperature T , ∆Tsat,EOS is the
uncertainty of saturation temperature as a result of uncertainty of the equation of state and
Tsat(P ) is the saturation temperature at pressure P .

The component of the saturation temperature uncertainty due to pressure measurement is
calculated by

∆Tsat,mea =

∣∣∣∣∂Tsat(P )

∂P

∣∣∣∣∆Psat,mea, (14)
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where ∆Tsat,mea is the uncertainty of saturation temperature as a result of pressure
measurement and ∆Psat,mea is the uncertainty of pressure measurement. The overall uncertainty
of the saturation temperature is given by

∆Tsat =

√
(∆Tsat,EOS)2 + (∆Tsat,mea)

2. (15)

The uncertainty of the map output propagated from the inputs of condensing temperature
and evaporating temperature is calculated by

∆ ˆ̇Winput =

√√√√( ∂ ˆ̇W

∂Tevap
∆Tevap

)2

+

(
∂ ˆ̇W

∂Tcond
∆Tcond

)2

, (16)

where ∆ ˆ̇Winput is the uncertainty due to inputs at the map output, ∆Tevap is the uncertainty
of evaporating temperature at input and ∆Tcond is the uncertainty of condensing temperature
at input.

5.2. Uncertainty due to training data
Uncertainty due to training data is the uncertainty propagated to the map output from the
training data through the map coefficients. This can be understood by considering the estimation
of the map coefficients as a function of the training data as

~̂β = g(Tevap,train,1, ..., Tevap,train,n, Tcond,train,1, ..., Tcond,train,n, Ẇtrain,1, ..., Ẇtrain,n), (17)

where n is the number of training data points. Through function g and ~̂β in Eqn. (17), as
suggested in [8], the uncertainty component due to training data is calculated

∆ ˆ̇Wtrain =

√√√√√√√√√√√√√√√√

Σn
j=1

(
Σm
i=1

(
∂ ˆ̇W

∂βi

∂βi
∂Tevap,train,j

)
∆Tevap,train,j

)2

+Σn
j=1

(
Σm
i=1

(
∂ ˆ̇W

∂βi

∂βi
∂Tcond,train,j

)
∆Tcond,train,j

)2

+Σn
j=1

(
Σm
i=1

(
∂ ˆ̇W

∂βi

∂βi

∂Ẇ,train,j

)
∆Ẇtrain,j

)2

, (18)

where ∆ ˆ̇Wtrain is the uncertainty due to training data at the map output, ∆Tevap,train,j is the
uncertainty of the evaporating temperature at the jth data point, ∆Tcond,train,j is the uncertainty

of the condensing temperature at the jth data point, ∆Ẇtrain,j is the uncertainty of the power

consumption at the jth data point, and m is the number of coefficients in ~̂β.

5.3. Uncertainty due to model random error
In linear regression, the random error between true model and actual system, ε in Eqn. (1)
is assumed to be normally distributed around zero with some finite variance. This variance
becomes part of the uncertainty of the uncertainty of the map output and can be presented
in the form of confidence intervals. Statistic textbooks [9, 10] illustrated that the confidence
interval of the variance can be calculated as
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∆ ˆ̇Wmodel = tn−m,1−α/2σ

√
1 + ~xT (XT

trainXtrain)
−1
~x (19)

where ∆ ˆ̇Wmodel is the uncertainty due to model random error at the map output.
One significant term in Eqn. (19) is ~xT (XT

trainXtrain)−1~x which is the leverage of a regression
model [11]. It estimates how deviated the current input vector to the map is relative to
the training data of the regression model, and the magnitude of the leverage grows with the
deviation. This helps to understand if the estimation is related to the training data and if (or
“how much”) the model is applicable at the current situation described by the input vector.

5.4. Uncertainty due to output
Uncertainty of the map output should represent the probable range where the true value lies
relative to the map output. However, since the map is built from data obtained from measured
power consumption instead of true values of the power consumption, the uncertainty components
of the map output propagated from other sources only estimate the uncertainty of the estimation
with the measured power consumption. Another component of uncertainty must be introduced
so that the map output uncertainty is the uncertainty to the true map output. This uncertainty
component can be approximated with the uncertainty of the measured power consumption with
its true values by

∆ ˆ̇Woutput =
1

n
Σn
i=1

∆Ẇtrain,i

Ẇtrain,i

. (20)

5.5. Overall uncertainty
The overall uncertainty of the map output is given by the square of the sum of all uncertainty
components as

∆ ˆ̇W =

√
(∆ ˆ̇W input)

2
+ (∆ ˆ̇W train)

2
+ (∆ ˆ̇Wmodel)

2
+ (∆ ˆ̇W output)

2
. (21)

6. Results and discussion
To study how this calculation method of compressor map output uncertainty helps to determine
extrapolation uncertainty, the performance data of a 4.5kW R22 reciprocating compressor is
used. The tabulated performance data shows the compressor power consumption at different
evaporating and condensing temperature with a constant suction superheat 11 K within its
operating range as shown in Figure 1.

Since the manufacturer data does not include experimental uncertainty, it is assumed that the
data in the specification are the true values of the performance, and they are used to approximate
the observations during steady state experiments with the assumptions in Table 1.

Table 1. Assumptions to approximate results in experiments of steady state compressor
operation

Variable Zero-order uncertainty First-order uncertainty

Power consumption 0.50% 3%
Evaporating pressure 0.80% 0.9kPa
Condensing pressure 0.80% 0.4kPa
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The steady state period is assumed to be 10 minutes long with data acquired at 0.1Hz in
the experiment. The experimental observations at all data points in Figure 1 are generated by
the method listed in Section 4.

6.1. Study cases and comparison of maps
To examine if the uncertainty of compressor map changes as the map extrapolates, various
compressor maps trained from different ranges of data are compared. Six maps with different
ranges of training data are designed for the study and the ranges of the training data in these
maps are shown in Figure 2.
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Figure 2 shows that Maps 1 to 5 have their ranges of training data shifting from the top
right-handed corner of the operating range of the compressor to its bottom left-handed corner,
while Map 6 covers the entire operating range. Since it is unfair to compare maps that are
generated by different number of data points, the training data points in each map are arranged
such that each map contains 70 data points.

6.2. Effect of range of training data on map output
To study how the range of training data affects the extrapolation uncertainty and accuracy,
the difference between the map output and approximated measurement and the map output
uncertainty for all data points in Figure 1 are plotted in Figure 3, and a similar figure with their
uncertainty components is plotted in Figure 4.

Figure 3 shows that inaccurate map outputs are associated with higher uncertainty and the
uncertainty calculation method is a good indicator of the accuracy of the map output. Figure 4
shows that the high uncertainty of the inaccurate data points in Figure 3 are primarily a result
of high uncertainty from model random error and training data.

The increase of uncertainty from model random error with inaccuracy can be explained by
the leverage term ~xT (XT

trainXtrain)−1~x in Eqn. (19) which increases as the map extrapolates,
and map extrapolation results in lower accuracy. Hence the uncertainty from model random
error increase with a decrease of the map accuracy and applicability.

To explain the increase of uncertainty from training data with a decrease of map accuracy
in Figure 4, the squared terms in Eqn. (18) are labeled as uncertainty from training data per
measurement, and their values from two map outputs of Map 1 are plotted as Figures 5 and 6.
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Figure 5 shows a histogram that is more left-skewed than Figure 6. This is because Figure 5
is obtained from a data point inside the training data range of Map 1 (see Figure 2), and the
map only needs information from a few data points around Tevap = −1.1◦C and Tcond = 60.0◦C
to estimate its map output. Hence the estimation does not depend on most of the data points,
and their training data uncertainties do not propagate to the map output as shown by Figure 5.

However, Map 1 extrapolates to the lower left handed corner in Figure 2 for the condition in
Figure 6, and the estimation is significantly affected by multiple data points in the training data.
If any of these significant training data points change, the estimation result at this condition will
be changed significantly. Hence much more training data points propagate their uncertainty to
the map output under the condition in Figure 6 than that in Figure 5. This also explains that
the uncertainty of training data is a significant component in the extrapolation uncertainty of
the map output, and the uncertainty increases as the map applicability and accuracy decrease.

6.3. Effect of number of training data points on map output
To understand how the number of training data points affect the map output, another map
(Map 7) was created with the same range of training data as Map 1 and 24 data points only, as
shown in Figure 7. The accuracy of Map 7, rated by coefficient of variation cov as
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cov =
Mean of the sum of squares of errors

Mean value of estimated values
=

σ

1/n · Σn
1 ŷi

(22)

is compared with that of Map 1 in Table 2.

Table 2. Accuracy of Maps 1 and 7.

Map Coefficient of variation based on
training data poinst only (covtrain)

Coefficient of variation based on
all data points in Figure 1 (covall)

Map 1 0.18% 0.31%
Map 7 0.17% 1.10%

Table 2 shows that the accuracy of Map 7 is similar to that of Map 1 at the training data
points, but the analysis with all available data points shows that Map 7 is less accurate than
Map 1. This shows that using fewer training data points reduces map accuracy. To understand
if it is related to extrapolation, the difference between the power consumption estimation and

their approximated measurement with the distance, e.g.
√

∆T 2
cond + ∆T 2

evap, from the nearest

training data point as shown in Figures 8 and 7.
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Figure 7. Training data points for
Maps 1 and 7. Note the absence of
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Figure 8. Change of accuracy with
distance to nearest training data point
for maps 1 and 7.

As shown in Figures 8 and 7, although the range of training data points in both maps is
the same, the effect of the reduced number of points in the training data is pronounced for
large distances (e.g. extrapolated outside training data range of map) of 10◦C or larger and can
increase the uncertainty from 10% (Map 1) to around 17% (Map 7) in the most extreme case.

This shows that the inaccuracy due to the reduction of training data can be shown by
uncertainty. To understand why uncertainty can show this, Figures 9 and 10 are plotted.

Figures 9 and 10 show that both the accuracy of Maps 1 and 7 decreases as their uncertainty
from model random error and the uncertainty from training data increase, and the reduction
of Map 1 accuracy in both figures are more rapid than Map 7. This shows that Map 7, despite
having the same training data range as Map 1, is less applicable and accurate as Map 1. This
shows that extrapolation uncertainty and accuracy are not only affected by the range of training
data but also the number of training data points.
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Figure 9. Change of accuracy of
maps with uncertainty from model
random error in Maps 1 and 7.
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Figure 10. Change of accuracy of
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data in Maps 1 and 7.

7. Conclusions
To conclude, this paper demonstrates how uncertainty of 10-coefficient compressor maps can be
calculated based on the uncertainty due to inputs, the uncertainty due to model random error,
the uncertainty due to training data and the uncertainty from outputs. It shows a method to
assess the acuracy and applicability of the map output under extrapolation without measuring
the output variable. It also shows that the range of training data and the number of training
data points affect the accuracy and applicability of the map.

8. Future work
One of the basic assumptions in this paper is that individual measurement values are normally
distributed around their average value. However, this might not be the case for actual
measurement data. Therefore, experiments with actual compressor measurements should be
conducted to check whether this assumption is appropriate.
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