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Thin layers of Bi2Sr2CaCu2O8+δ (Bi2212) were fabricated using the mechanical exfoliation technique. Good electrical contacts to the thin Bi2212
films with low contact resistance were realized by depositing Ag and Au electrodes onto the Bi2212 films and annealing them with an oxygen flow
at 350 °C for 30min. We observed cross-section images of the Bi2212 thin film device using a transmission electron microscope to characterize the
diffusion of Ag and Au atoms into the Bi2212 thin film. © 2018 The Japan Society of Applied Physics

T
wo-dimensional (2D) atomic crystals have attracted
much attention from the perspective of both funda-
mental research and practical application.1,2) Graph-

ene, a single layer of graphite, is a pioneering material that has
been studied in a variety of experiments, such as investiga-
tions of the quantum Hall effect3–6) and spin transport meas-
urements.7–9) Transition metal dichalcogenides (TMDs) have
also been fabricated into 2D layers.1,2) For instance, MoS2 is
inherently semiconducting, but by applying an electric field to
an atomically thin MoS2 film, the carrier density in the film is
increased, which results in metallic behavior10) and eventually
superconductivity at low temperatures.11)

As demonstrated for graphene3–6) and TMDs,10,11) electric
field effects are expected for a variety of atomically thin
films.1,2) The motivation for the present study is the electric
field effect for high-Tc (critical temperature) superconductors.
In high-Tc superconductors, carrier doping has been achieved
by chemical substitution12) and=or oxygen doping.13,14) If
reversible carrier doping is realized by the electric field effect,
a wide doping range from the underdoped region to the over-
doped region via the optimum Tc condition can be inves-
tigated in one atomically-thin high-Tc superconductor device
simply by tuning the electric field. This could be helpful for
understanding the detailed mechanism of high-Tc supercon-
ductors. However, there have been relatively few experimen-
tal studies on thin layers of high-Tc superconductors,15–17)

compared with those on TMDs. One of the issues associated
with the realization of thin-layer high-Tc superconductor
devices is the difficulty of fabricating good electrical contacts
to them.

In this study, we present a method to obtain electrical con-
tacts to thin films of Bi2Sr2CaCu2O8+δ (Bi2212), a cleavable
high-Tc superconductor, using the mechanical exfoliation
technique (commonly known as the “scotch tape” tech-
nique).1) We also show how the electrical contacts can be
realized by observing cross-sectional images of the thin
film device with a transmission electron microscope (TEM).
Such thin layers of Bi2212 can be integrated into future 2D
circuits made of graphene and hexagonal boron nitride,18,19)

where all functions could be tuned by applying an electric
field.

Single-crystalline Bi2212 was grown by the floating zone
method.20,21) The crystal structure of Bi2212 is shown in
Fig. 1(a). Because the interaction between the two BiO layers
is weak, the exfoliation takes place between the two BiO
layers. The excess oxygen atoms are also added between the

two BiO layers. Conversely, superconductivity arises at the
CuO layer.

To prevent the escape of oxygen from the Bi2212 crystal,
which reduces the carrier density, during the mechanical
exfoliation and lithography processes, we chose an overdoped
Bi2212, where the hole doping p is approximately 0.2.22)

The overdoped Bi2212 was obtained by annealing the crystal
at 700 °C for 1 week in a flow of O2 gas. The magnetization
M of the overdoped Bi2212 is shown in Fig. 1(b). Tc of the
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Fig. 1. (a) Crystal structure of Bi2212. The lattice constants along the
a- and c-axes are 5.4 and 30.6Å, respectively. (b) Temperature dependence
of magnetization M (normalized at T = 10K) for the overdoped Bi2212 bulk
sample used in the present work. The applied magnetic field H is 50Oe. Tc of
the overdoped Bi2212 is determined to be 80K.
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bulk sample is estimated to be 80K from the magnetization
measurement.

We then performed standard mechanical exfoliation for the
overdoped Bi2212 under ambient conditions. After repeating
the exfoliation process, a scotch tape with many Bi2212
flakes was pasted onto a SiO2 (285 nm)=Si substrate with
several 100 nm thick gold marks. Typical optical microscope
images of Bi2212 films with various thicknesses are shown in
Fig. 2. To determine the thickness of Bi2212 from the color
of the film under the microscope, we measured the thickness
of the film with a commercially available atomic force
microscope (AFM) to obtain the relationship between the
thickness and the color of the Bi2212 film. As detailed in
Ref. 23, only the green intensity I of the reflected light was
extracted from the optical microscope image. We then com-
pared I of the SiO2=Si substrate (Isub) with I of the Bi2212
film on the substrate (Ifilm). By calculating the contrast ratio
C = (Ifilm − Isub)=Isub, we can relate C to the thickness of the
film, as shown in Fig. 2.

To perform transport measurements, electrodes were
attached to the thin films of Bi2212 using standard elec-
tron beam lithography and a subsequent lift-off process. A
poly(methyl methacrylate) (PMMA) resist was coated on the
substrate and dried in a vacuum box. To prevent the escape
of oxygen from the Bi2212 thin films, we avoided heating
the substrate to dry the resist. We then performed electron
beam lithography, irradiating the PMMA resist with an
electron beam. After the development of the resist, 50 nm
thick Ag and Au electrodes were deposited by a Joule heating
evaporator without breaking the vacuum.

We attempted the use of four different electrodes (Au=Ti,
Au, Cu, and Au=Ag) to make electrical contact with the thin
films of Bi2212. However, none of them presented good
electrical contact with low contact resistance. Thus, we baked
the Bi2212 device with Au=Ag electrodes at 350 °C for 30
min with an O2 gas flow,24) as previously demonstrated for
micro-meter-scale high-Tc superconductor devices.25) For
bulk Bi2212 samples, electrical contacts were achieved by
annealing as-grown Bi2212 with Au paste at 600–800 °C.21)

However, this high-temperature annealing decomposed the
thin Bi2212 films. Thus, we decreased the annealing temper-

ature gradually and found that annealing at 350 °C for 30min
can achieve electrical contacts to the Bi2212 films with low
contact resistance. The contact resistance was approximately
100Ω for an area of 10 µm2, which is comparable to those for
TMDs and Au=Ti electrodes.26)

Figure 3(a) shows an optical microscope image of a typical
Bi2212 thin film device. From the AFM image, the thickness
of the Bi2212 is estimated to be 42 nm. In Fig. 3(b), we
present the temperature dependence of the resistivity of the
42 nm thick Bi2212 device. With decreasing temperature, the
resistivity decreases almost linearly, but with a slight convex
downward behavior [i.e., T n (n > 1)], which shows the
superconducting transition at 80K, typical of overdoped
Bi2212.21,27,28) To further characterize the Bi2212 thin film,
we measured current–voltage (I–V ) curves at temperatures
just below Tc. As shown in Fig. 3(c), the critical current is
approximately 4mA at T = 70K. The critical current density
Jc reaches 2 × 1010A=m2. Thus, a much larger critical current
density can be expected at lower temperatures.

Fig. 2. Green contrast ratio C (defined in the text) for various Bi2212
film thicknesses. Typical optical microscope images are also shown in the
figure.
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Fig. 3. (a) Cross section of Bi2212 film measured with the AFM. The
inset shows an optical microscope image of the device. The cross section is
taken along the dotted arrow in the inset. (b) Resistivity ρ of the 42 nm thick
Bi2212 device as a function of temperature T. Tc is the same as that of the
bulk sample. (c) I–V characteristics for the same device as in (b). The critical
current of this device is 4mA.
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As mentioned above, the key issue for realizing Bi2212
devices is obtaining good electrical contacts with thin Bi2212
films. To gain information concerning the interface between
the Bi2212 and the Au=Ag electrodes, we obtained a cross-
sectional image of a 21-nm-thick Bi2212 device using TEM.
Even for the 21-nm-thick device, a clear superconducting
transition can be observed, as shown in Fig. 4(a), although Tc
(= 73K) is slightly lower than that of the 42-nm-thick device.
Figures 4(b) and 4(c) show high-angle annular dark field
scanning TEM (HAADF-STEM) images taken in the vicinity
of and far from the Au=Ag electrode, respectively. The
brightest white spheres correspond to Bi atoms. The Bi atoms
are regularly arranged far from the electrode in Fig. 4(c).
Conversely, it is clear that there is an intermediate layer 5 nm
in thickness between the Au=Ag electrode and Bi2212 in
Fig. 4(b). As can be seen in the right panel of Fig. 4(b),
the Bi atoms are not regularly arranged immediately below
the electrode, but such irregularity is suppressed at approxi-
mately 5 nm from the interface, and the regular arrangement
of Bi atoms is maintained below this depth.

To characterize the diffusion of Ag and Au atoms into
the Bi2212, we performed energy dispersive X-ray (EDX)
analysis of the electrode=Bi2212 junction. In Fig. 4(d), we
show the EDX line profiles for Ag and Au atoms near the
interface between the Au=Ag electrode and the Bi2212 film.
Apparently, the Ag and Au atoms the Ag and Au atoms in the
electrode are mixed up after annealing after annealing. A
small amount of Ag atoms diffuse into the Bi2212 thin layer,
within 5 nm from the interface. The maximum distribution of
Ag is at approximately 2–3 nm from the interface between
Au=Ag and Bi2212 and is suppressed beyond 5 nm. Con-
sidering all of the possible elements (Bi, Sr, Ca, Cu, O, Au,
and Ag), the maximum percentage of Ag in the diffusion area
is approximately 10%. This fact has never been reported so
far. However, Au does not diffuse into the Bi2212 thin film.
This experimental fact clearly shows that the diffusion of Ag
atoms into Bi2212 is essential to obtain a good electrical
contact with thin layers of Bi2212.

In summary, we have fabricated thin layers of Bi2212
using the mechanical exfoliation technique. Electrical contact
with Bi2212 films was realized by depositing Ag and Au
without breaking vacuum and annealing the devices at 350 °C
for 30min with a flow of O2 gas. Tc of the Bi2212 thin films
is almost the same as that of the bulk material. Analysis of the
Bi2212 device with cross-sectional TEM images and EDX
suggest that the diffusion of Ag atoms by 5 nm from the
interface between the electrode and Bi2212 is essential to
obtain good electrical contact with Bi2212. This result is the
first step toward integration of high-Tc superconductors into
2D atomic-layer circuits.
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