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Abstract
We present an analytical method for designing fiber systems for a highly stable propagation of
soliton molecules. This analytical design uses the variational equations of the soliton molecule to
determine the parameters of the most suitable fiber system for any desired soliton, thus reducing
dramatically the cost of the whole procedure of design, for both the appropriate fiber system and
the desired soliton molecule.

Keywords: nonlinear fiber optics, optical communications, dispersion management, soliton
molecules, nonlinear Schrodinger equation, collective variables
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A soliton molecule refers to a collective entity made of sev-
eral pulses located very close to each other, and bound by a
certain phase relation [1-10]. During the propagation of a
soliton molecule, the temporal position and the phase of each
pulse can vibrate around an equilibrium configuration in a
manner similar to that of an atom within a molecule. Unlike
conventional solitons (i.e., with single pulse) which have been
widely used in fiber optic transmission systems [11-15],
soliton molecules have been only minimally examined,
because for a long time they were considered as having no
practical interest. Conventional solitons are mainly present in
long-haul transmission systems, where they are used to
encode binary data in the OOK (on—off keying) modulation
format [15]. The advantage of this modulation format lies in
its simplicity, because it uses only two symbols (namely, ‘1’
which is encoded by a soliton, and ‘0’ which is encoded by
the absence of light), necessitating a relatively simple detec-
tion system [15]. However, this modulation format suffers
from a poor spectral efficiency, which is inadequate to meet
the increasing demand of transmission capacities. Presently,
efforts focus rather on modulation formats of high spectral
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efficiency, called multi-level formats because of the use of a
higher number of symbols to encode binary data. Each
symbol corresponds to a ‘state’ of modulation associated with
well defined values for the amplitude and phase of the optical
carrier. In recent years, multi-level formats (involving both
the phase and the amplitude of the optical carrier) have been
permitted to dramatically increase the transmission capacities
[16]. However, such modulation formats are not without
drawbacks. In fact, increasing the number of symbols beyond
four makes the transmission system highly prone to nonlinear
effects, which cause distortions in the signal phase. In this
context, recent studies suggested that the use of soliton
molecules could provide a viable alternative because of the
more strong immunity of solitons against nonlinear effects in
fibers [6, 8]. In [6, 8] the authors demonstrated experimentally
the propagation of two-soliton molecules and three-soliton
molecules, in a dispersion-managed (DM) fiber system. Those
results suggest that the ‘absence of light’, the ‘DM soliton’,
the ‘two-soliton molecule’, the ‘three-soliton molecule’, and
so on, may be considered as the different states of a multi-
level modulation format, which could provide the best

© 2016 IOP Publishing Ltd  Printed in the UK
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Figure 1. Schematic representation of a conventional DM soliton
(dot-dashed curve) and two-soliton molecule (solid line).

immunity against nonlinear effects in fiber-optic transmission
systems. Despite these attractive prospects, it is clear that the
road towards possible applications of soliton molecules in
fiber-optic transmission systems is still long and strewn with
major difficulties. One of them lies in the fact that DM soli-
tons admit only very specific values of temporal width, power
peak, energy, and chirp [12]. Indeed, the combined effects of
the nonlinearity and the structure of the dispersion map,
impose strict constraints on the parameters of the light pulses
that can propagate in a highly stable manner, while executing
a perfectly periodic breathing [12, 17-19]. Such pulses, also
called ‘fixed points’ of transmission, are essential in the case
of long-haul DM systems (of the order of several thousands of
Km). A major difficulty in the use of DM solitons lies in the
carving of their intensity profile. Indeed, at the practical level,
there is currently no device for generating such solitons, due
to the complexity of their intensity profiles. Most practical
systems use rather pulses with Gaussian profile; which gen-
erate ultimately radiation effects highly detrimental to the
stability of solitons. However, such radiation effects may be
considerably reduced by adjusting at best the Gaussian profile
to the exact profile of the fixed point [18]. Such an adjustment
can be made only by means of theoretical tools, which are
necessary to obtain the exact profile of the fixed point.

Currently, in the case of soliton molecules, this adjustment
is performed through a procedure of search of the parameters of
the fixed points, known as being the Nijhof method [19]. The
procedure starts with a soliton molecule whose profile is
arbitrarily chosen, and one lets the molecule propagate within
the system over a distance which is also chosen in an arbitrary
manner. Then one calculates the average field of pulse over this
distance, and one uses it as initial condition for the next step.
Thus, one repeats the field-averaging procedure, step by step,
until the average field ceases to vary. The final average field
then gives the intensity profile of the fixed point. This proce-
dure suffers from two major drawbacks:

(i) First, this method is too time consuming, due to its
iterative nature and the necessity to make arbitrary choices on
the pulse profile at the beginning of the procedure, and on the

propagation distance which is used to calculate the average
field at each step of the procedure. Moreover, with such
arbitrary choices, there is no guarantee that the method
converge to a fixed point.

(i1) The Nijhof method [19] allows to find the fixed point
of a given DM system, but does not allow to do the reverse
operation; that is, determine the parameters of a DM system
that admits any desired light molecule as fixed point.

In the present work, we resolve these two major draw-
backs by proposing a method for analytically designing the
DM system that admits any desired light molecule as fixed
point. We illustrate this method on two-soliton molecules.

One can describe in a realistic way the propagation of
light pulses in optical fiber systems by the nonlinear Schro-
dinger equation (NLSE) which follows [12]

L i62(2) 0%
0z 2 Or?

where 1 (z, t) is the envelope amplitude of the electric field
measured in units of square root of Watts at position z in the
fiber system, and at time ¢ in the moving frame. The
parameters (3, (z) and -y (z) designate the chromatic dispersion
and the Kerr nonlinearity coefficients, respectively.

Although a soliton molecule is a full entity, its dynamical
behavior is rather similar to that of a mechanical system made
up of several components interacting in a rather elastic
manner. Each component may be considered as a conven-
tional DM soliton, but whose internal dynamic is not neces-
sarily the same as that of the other components of the
molecule, since optical fiber is an environment which is
always more or less prone to various perturbations. Conse-
quently, the intensity profile of a soliton molecule is neces-
sarily far more complex than the bell-shaped profile of a
conventional DM soliton. It is therefore extremely difficult to
ascertain the internal dynamics of a soliton molecule by a
direct analysis of its intensity profile obtained by solving the
NLSE (1). On the other hand, one can get a clear insight of
the overall dynamical behavior of the molecule, including its
internal dynamics, by means of a relatively small number of
dynamical variables, called collective coordinates, provided
that those coordinates are appropriately chosen so as to
describe all the major degrees of freedom of the internal
dynamics of the molecule. The method of analytical design of
solitons molecules that we propose in this work, is funda-
mentally based on a collective coordinate approach. These
coordinates are introduced in the theoretical treatment through
a trial function, called ansatz function, which is chosen to be
of the following form

P (z, 1) = X (E)er it Hinrsitic )

where & = (t — x»)/x; and the function ¢ is as yet an
unknown function, which will be chosen to represent at best
the exact profile of the soliton molecule. Here, the coordinates
X2, X4, X5 and xg, represent respectively the position of the
center-of-mass, the chirp, the frequency, and the phase constant
of the soliton molecule as a whole entity. x; and x3 are
coordinates which contribute to structuring the intensity profile
of the molecule, as we illustrate in the following two cases:

—iv@IWPY =0, (1)
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i. The ansatz (2) can be used to represent the profile of the
conventional DM soliton, by simply setting
¢ = exp(—£&?). In this case, x; represents the soliton’s
amplitude, as shown in the dot-dashed curve of figure 1,
while the temporal width of the soliton (full width at
half maximum of the intensity profile) is given
by AtFWHM = X3V 2In2.

ii. In the case of a two-soliton molecule, ansatz (2) can be
used with a function ¢ given by [1, 9]

¢ = Eexp(=&). 3

The solid curve in figure 1 illustrates the temporal profile
of this molecule, which consists of two pulses with 7 phase
shift. Here, it should be noted that the coordinate x; does no
longer represent exactly the solitons amplitude, which is now
given by a = x/\/2e. The second relevant parameter for
characterizing this molecule is the separation between the
positions of the two pulses, given by d = x,, — x,_ =
X3 V2, as illustrated in figure 1.

By inserting the ansatz (2)—-(3) in the NLSE (1), and
applying the projection operator method on the resulting
equation [20], we obtain the following set of ordinary diff-
erential equations, which describe the spatial evolution of the
collective coordinates of the soliton molecule

X = 0.582(2)x1x4, (4a)

Xy = —[2(2)xs, (4b)

X = — B2 (2)x3x4, (40)

Xy = — B @ (uxs = x§) — ary(@xfxs (4d)
%5 =0, (4e)

X6 = P (D) (a3x3 7 — 0.5x3) — auy (2)xf- (4f)

Here, oy, oy, a3 and a4 are coefficients that depend on the
particular choice of the function ¢, which is closely related to
the particular type of soliton molecule considered. Their
values will be specified in what follows. Then, from the set of
equations (4a)—(4f), we obtain the equation of evolution of the
collective coordinate x3

x% = —aﬁ%x;z - 2a2ﬁ27E0x3_1 + 2c, 5)

where Ej o< x;(0)%x3(0) = x(2)*x3(z) is the energy of the
molecule. The constant of integration ¢ is determined by
imposing that the middles of the fiber segments of the
dispersion map (of normal and anomalous dispersion)
correspond to chirp-free points such that

cr = 05uB3.xsl + B3y Eoxsd, (6)

for the fiber section with normal dispersion (+) and for the
fiber section with anomalous dispersion (—). x3, and x;_
represent the minimum separation between the two pulses (of
the molecule) within the normal and the anomalous dispersion
fibers, respectively.

Following the procedure of designing the conventional
DM soliton systems [13], here we derive the expression for
the maximum temporal separation between solitons x3max
from the continuity of chirp when the soliton molecule pro-
pagates from one fiber section to another fiber section. Then,

from equations (5) and (4d) we obtain the following expres-
sion for the maximum separation

Bmax = 0 B24Bo-(Bae — Ba)/ (e B3 — c-B3,). (1)

To derive the expression for the length of the fiber sections,
we integrate equation (5) with respect to z. We find the length
of normal L, and anomalous L_ fiber sections, to be

L =2[g(Brs, 1a» €1, Bmax) — & B2+, s €1, 1310)], (8)

where the function g(8,, 7, ¢, x3) is found to take the
following forms, depending on both c=c (c.)
and A = —8 3¢ — (20 327Eo)

(i) Forc >0and A <0
g(B2 7. ¢, x3) = VR 2)™' + nyInQ2eVR + 1)), (9)

(i) Forc >0and A =0

g(B2, v, ¢, x3) = VR (2¢) ™ + noln(ny). (10)

(iii) Forc < 0and A < 0

g(B2 7, ¢, x3) = VR (2¢) ! + nyarcsin (11)

e

with 1, = %?ZEU, M = 4cxz — 2ap762Ep and R = R(x3) =

2cx32 — 20 BrvEpx3 — a]ﬂﬁ. It is worth noting that in [13],
where the conventional DM soliton is considered, only the
case (9) were considered. The different cases enumerated in
relations (9), (10) and (11), constitute the generalization of the
procedure reported in [13], so as to treat not only
conventional DM solitons but also soliton molecules. Thus,
to design the dispersion map (L_/2, L., L_/2) of the
appropriate DM system for any desired soliton molecule, we
proceed as follows. We consider the beginning point of the
dispersion map as the midpoint of the anomalous dispersion
fiber, and use the following set of parameters: x3_, Eo, 32+, v,
and x3m,., as input data. Then, these four parameters are used
to calculate the constants of integration ¢- and c; from
equations (6) and (7) respectively. Next, the minimum pulse-
to-pulse separation in the normally dispersive fiber segment is
determined from equation (6). Finally, the lengths L_ and L,
required for periodic evolution of the desired soliton
molecule, are evaluated by using the formula (8).

From a practical viewpoint, our procedure of analytical
design requires that we begin by specifying the fiber
parameters and those of the desired soliton molecule.
For illustrative purposes, let us consider a DM system
having the following parameters: (3, = —5.2 ps*km ',
By = 43ps°km™ !, and v =14 W 'km™'. Suppose we
wish to transmit through this system, a soliton molecule
having the following parameters: Ey = 0.177pJ, x_ =
10 ps, X3max = 15.2 ps (which corresponds to a breathing
factor T, = x3max/X3— = 1.52, a peak power Py = 10 mW,
and temporal width Afgwym = 11.77 ps, for each pulse of the
molecule). Then, our analytical formula (8) immediately gives
us the lengths of the two segments of fibers of the dispersion
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Figure 2. [llustration of the analytical design of the DM system.

map: L_ = 22.602 km, et L, = 26.462 km. The resulting
average dispersion is then (3,,, = —0.079 ps? km'. Here, it
is worth emphasizing that the fundamental property of a DM
soliton is that it propagates along the fiber, while executing a
perfectly periodic internal dynamic. It is therefore essential to
check that our analytical designed system of soliton mole-
cules, possesses this fundamental property, i.e., check whe-
ther the soliton molecule defined by the profile (2)—(3) is able
to propagate along the system while performing a perfectly
periodic internal dynamic.

Figures 2(a) and (b) illustrate the results of analytical
design that we obtained in the following range of energy:
0.0036 pJ < Ey < 2.15 pl. In particular, figures 2(c), (d), (e),
and (f), obtained for (3,, = —0.079 ps® km ', show a per-
fectly periodic evolution of the soliton parameters over the
map length L., = L_ + L, designed analytically.

The results of figure 2, demonstrate that the soliton
molecules designed analytically, are endowed with the fun-
damental property related to the periodic character of the
internal dynamics of DM solitons. However this property
does not indicate whether or not the soliton molecule is able
to propagate in a stable manner, over a considerable distance
in a system subject to perturbations (e.g., the photon noise). In
this regard, it is worth noting that, as a general rule, the
temporal profile of the exact fixed point of a DM line is
endowed with very small side lobes at the leading and trailing
edges of the soliton. But those side lobes, which are generally
visible only on the log scale of the intensity profile of the
soliton, play no significant role in the soliton dynamics, and
are impossible to synthesize at the practical level. The exact
fixed point can be obtained only numerically via the Nijhof
method [19]. The fixed point obtained by our analytical
procedure, whose temporal profile is given by the Hermite
Gaussian ansatz (2)—(3), with the system parameters given by
our analytical formula (8), is not rigorously the exact fixed
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Figure 3. 20 000 km propagation of a bisoliton molecule obtained by
numerically solving the NLSE. (al)-(bl) uses the analytically design

solution as input condition. (a2)-(b2) uses the exact soliton as input

condition. B,,, = —0.079 ps® km™".

point of the system, because the Hermite Gaussian ansatz has
a completely smooth profile. We will thus refer to the fixed
point designed analytically as being the proximity fixed point
(PFP). The PFP has the dual advantage, of being much easier
to calculate and much easier to carve at the practical level
(when compared with the exact fixed point). In this context, it
is useful to examine the stability of our PFP in a situation
more realistic than the one represented in figures 2(c), (d), (e),
and (f), i.e., in a situation where the propagation is not limited
to a single period of the dispersion map. A realistic situation
consists in injecting the soliton in an ultra-long deployed line
(containing a large number of periods of dispersion map), in a
perturbed environment (e.g., under the effects of the numer-
ical noise or a photon noise).

So, we injected the soliton molecule whose parameters
are represented in figures 2(c), (d), (¢) and (f), in an ultra-long
DM system designed analytically with the energy
Ey = 0.177 pJ and the average dispersion 3,, = —0.079 ps?
km ! We numerically solved the NLSE (1) by means of the
usual split-step Fourier method [12, 15]. The simulation
contains necessarily a numerical noise (generated by rounding
errors of numerical computation and truncation errors of the
split-step Fourier method). Figures 3(al) and (b1) show the
simulation of propagation of the PFP over 2 x 10* Km.
Figure 3(al) shows the profile of the soliton molecule at the
fiber input (dashed curve), and at the fiber output (solid line).
Figure 3(b1) shows the evolution of the soliton’(s) temporal
profile (recorded after each period of the dispersion map), as a
function of the propagation distance. Figures 3(al) and (bl)
illustrate remarkably the very high stability of our analytically
designed PFP, in an environment perturbed by the numerical
noise. Furthermore, it is important to compare the dynamical
behavior of our PFP (figures 3(al)-(bl)), with that of the
exact fixed point given by the Nijhof method [19], which is
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Figure 4. Same numerical simulation as in figure 3, but in the
presence of photons noise.

displayed in figures 3(a2) and (b2). As can be seen in
figures 3, the dynamical behavior of our PFP agrees extre-
mely well with that of the exact fixed point.

On the other hand, we have examined the robustness of
this soliton molecule in an even more strongly perturbed
environment. To this end, we carried out the same simulation
as in figure 3, but by systematically adding a photon noise
after each period of the dispersion map. We arbitrarily chose a
noise power comparable to the one that may be generated by
an amplifier of gain G which fully compensates the losses
induced by a standard Telecom fiber (having a loss coefficient
of 0.2dB kmfl). In other words, we arbitrarily chose the
maximum noise power to be Bise = hvng (G — 1) At where
G represents the amplifier gain, ng, is the spontaneous emis-
sion factor, i is Planck’(s) constant, Ar is the temporal
window of the pulse, v is the photon frequency. The results of
our simulations are represented in figures 4, which show that
the effects of this photons noise manifest themselves essen-
tially in the same way for the two types of pulses considered.
Indeed, whatever be the input pulse, PFP (figures 4(al) and
(bl)) or exact fixed point (figures 4(a2) and (b2)), the
cumulative effect of the photons noise causes a slight dist-
ortion of the soliton’(s) profile, with a slight asymmetry
between the two pulses of the molecule (and a small differ-
ence of peak power between the two pulses), which is clearly
visible in figures 4(al) and (a2). Despite these slight distor-
tions of pulse profile, the PFP shows a remarkable robustness.

In principle, the PFP should have a dynamical behavior
all the more close to that of the exact fixed point, as the
difference between their respective temporal profiles,
q = Yexact — Wprp, 1S small. The amplitude of the field g,
which we call residual field, depends essentially on the
structure of the dispersion map of the system (and specifi-
cally, on the average dispersion of the system). We can thus
predict that the PFP will have a less good stability if the
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Figure 5. Same numerical simulation as in figure 3 , but with
Bom = 6.46 x 107 ps2 km™".

residual field is strong. To verify this point, we considered an
other value of the average dispersion, for which the residual
field energy is larger than in the case of figures 3 and 4. To
this end, we performed analytical design for the average
dispersion 3,,, = 6.46 x 10" *ps? km ™', and the numerical
simulation of propagation of the PFP having initially the
profile defined by the Hermite—Gaussian ansatz (2).

The results, which are displayed in figures 5(al) and (b1),
show that here also, our PFP executes a highly stable pro-
pagation, comparable to that of the exact fixed point
(figure 5(a2) and (b2)). By the way, we note the presence of
pedestals in the profile of our PFP after 20 000 km, which we
attribute to the increased level of the initial residual field. But
these pedestals have no significant harm on the stability of our
soliton molecule over thousands of km.

By the way, it should be noted that, a fundamental
property of DM solitons (which makes a great qualitative
difference when compared with conventional solitons), is that
they can exist in the normal dispersion regime. In this respect,
the results of figure 5, which correspond to a positive value of
the average dispersion, demonstrate that the soliton molecules
designed analytically are also endowed with this fundamental
property of DM solitons.

To conclude, in this work we have presented a fully
analytical method for designing DM fiber systems which
enable a highly stable propagation of soliton molecules. This
analytical method has two main virtues: it represents only an
extremely small fraction of the amount of calculations
required when the conventional numerical procedure is used.
It uses a more realistic intensity profile (at the practical level)
than the complex profile of the exact soliton molecule, but
which is close enough to the exact profile for achieving
essentially the same level of stability. As a final note, we
would like to stress that although the analytical formulas
obtained in this work correspond to a lossless system, these
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formulas may be used to design the practical version of the
system including losses and periodic amplification, by fol-
lowing the procedure described in [14].
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