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ABSTRACT

We present a mechanism for the formation of the low-frequency 1/f magnetic spectrum based on numerical
solutions of a shell-reduced MHD model of the turbulent dynamics inside the sub-Alfvénic solar wind. We assign
reasonably realistic profiles to the wind speed and the density along the radial direction, and a radial magnetic
field. Alfvén waves of short periodicity (600 s) are injected at the base of the chromosphere, penetrate into the
corona, and are partially reflected, thus triggering a turbulent cascade. The cascade is strong for the reflected wave
while it is weak for the outward propagating waves. Reflection at the transition region recycles the strong turbulent
spectrum into the outward weak spectrum, which is advected beyond the Alfvénic critical point without substantial
evolution. There, the magnetic field has a perpendicular power-law spectrum with slope close to the Kolmogorov
−5/3. The parallel spectrum is inherited from the frequency spectrum of large (perpendicular) eddies. The shape
is a double power law with slopes of �−1 and −2 at low and high frequencies, respectively, with the position of
the break depending on the injected spectrum. We suggest that the double power-law spectrum measured by Helios
at 0.3 AU, where the average magnetic field is not aligned with the radial (contrary to our assumptions), results
from the combination of such different spectral slopes. At low frequency the parallel spectrum dominates with its
characteristic 1/f shape, while at higher frequencies its steep spectral slope (−2) is masked by the more energetic
perpendicular spectrum (slope −5/3).
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1. INTRODUCTION

At heliocentric distances of about 0.3 AU the magnetic field
spectrum in the fast streams of the solar wind has a form of
a double power law with a break at about f = 5 × 10−3 Hz
and a slope of approximately −1 and −5/3 at lower and higher
frequencies, respectively (Bavassano et al. 1982; Denskat &
Neubauer 1983; Bruno & Carbone 2005). Fluctuations in these
two ranges have a different evolution with distance (Bavassano
et al. 1982; Marsch & Tu 1990; Roberts 1992). The low-
frequency part approximately follows the WKB behavior, E ∝
r−3, dictated by the solar wind expansion. The high-frequency
part instead decreases much sharply, its energy content being
depleted by the turbulent cascade, and maintains approximately
the same spectral slope. Therefore, the frequency break shifts to
lower and lower frequency as the heliocentric distance increases,
the 1/f spectrum occupying the range 3 × 10−6 Hz � f �
8 × 10−5 Hz at 1 AU (Matthaeus & Goldstein 1986). The
energy in the low-frequency tail progressively contributes to
the turbulent heating of the solar wind. The spectral evolution
can be understood as a competition between the expansion time
scale and the cascade time scale, regulating the decay of energy
respectively at small and large scales (Tu et al. 1984), but the
origin of the 1/f spectrum is still a matter of debate.

There are some indications that it may have a genuine solar
origin, reflecting the emergence, cancellation, and sinking of
the magnetic field at the photosphere: spectra built from mag-
netogram data at low-intermediate latitudes show a 1/f slope
at low wavenumbers, which also correlate to the spectrum of
density fluctuations in the heliosphere (Matthaeus et al. 2007).

In this view, the formation mechanism relies on magnetic recon-
nection, occurring over a hierarchy of scales as a stochastic pro-
cess with some self-similar properties. Reconnection, this time
in the corona, has also been invoked as the underlying process,
since the timescale associated with the restructuring of coronal
magnetic field is about 1 day, i.e., in the range of observed fre-
quencies (Close et al. 2004). Recently, the formation of a 1/f
spectrum has been observed in homogeneous incompressible
MHD simulations of very long duration, probably originating
from an inverse cascade not associated with well-defined invari-
ants (Dmitruk & Matthaeus 2007; Dmitruk et al. 2011). Other
ideas rely on large-scale properties of the corona and solar wind:
reflection was suggested as a possible mechanism to obtain a
k−1 spectrum from an isotropic cascade of Alfvén waves coming
from the Sun in the expanding solar wind (Velli et al. 1989). The
linear evolution of Alfvénic pulses excited in the corona leads to
a signal (outside the Alfvénic critical point) which has periodic-
ities of about 15–30 minutes (ringing of the corona; Hollweg &
Isenberg 2007). Though this period appears too low to account
for the entire range of observed frequencies, as suggested by
the authors, the ringing of the corona could play a role in the
formation of the 1/f spectrum.

In this Letter, we combine the latter two ideas, the ringing
of the corona and nonlinear interactions with reflected waves,
to study the formation of the magnetic field spectrum advected
by the solar wind. To this aim, we use a shell-reduced MHD
model (Verdini et al. 2009) to follow the onset of turbulence
resulting from the coupling between Alfvén waves propagating
in the chromosphere, corona, and sub-Alfvénic solar wind. The
solar wind profiles (Alfvén speed, velocity, and density profiles)

1

http://dx.doi.org/10.1088/2041-8205/750/2/L33
mailto:verdini@oma.be
mailto:Roland.Grappin@obspm.fr
mailto:rui.pinto@cea.fr
mailto:mvelli@jpl.nasa.gov


The Astrophysical Journal Letters, 750:L33 (5pp), 2012 May 10 Verdini et al.

Figure 1. Left panels: solar wind model. Profiles of the Alfvén and wind speed
(top) and of the density and overexpansionF = A(r)/r2 (bottom). Right panels:
snapshots of the amplitude of the Elsässer variables (top) and of the velocity and
magnetic fluctuations (bottom). The Alfvén and wind speed are also overplotted
as dotted lines.

are given steady numerical solutions of the slow wind model
by Pinto et al. (2009). Such slow wind solutions are chosen
to illustrate the mechanism responsible for the formation of
the 1/f spectrum, fast wind solutions will be considered in a
forthcoming paper.

In homogeneous turbulence with equal energy in both Alfvén
species the forcing controls the development of a weak (or
strong) cascade, depending on whether the parallel Alfvén
time is smaller (or not) than the nonlinear time. The energy
density scales with perpendicular wavenumber as k−2

⊥ or k
−5/3
⊥

(e.g., Verdini & Grappin 2012) for both species. However, in
the inhomogeneous stratified open corona and solar wind, the
two Alfvén wave species can in principle have very different
amplitudes. We will see that they follow different cascade
regimes (weak/strong) at the same time. This is the key of the
results obtained in the present Letter. We show that for realistic
conditions a 1/f magnetic spectrum forms as a consequence
of the strong turbulent cascade of reflected/inward propagating
waves, which reflect back (ringing) at the transition region (TR)
and are advected outside the Alfvénic critical point without
substantial modification, since the outward propagating waves
experience a weak cascade.

2. EQUATIONS AND PARAMETERS

The model equations are obtained from the MHD equations
by separating the large-scale stationary fields and small-scale
fluctuating fields (Heinemann & Olbert 1980; Velli 1993).
Among the large-scale fields, the wind speed (U) and density (ρ)
are the solution of a 1D hydrodynamic solar wind model (Pinto
et al. 2009; Grappin et al. 2010) with specified heating functions
and assigned flux tube expansion (A = F(r)r2). Combining ρ
with the magnetic field strength B� at the base of the flux
tube, and requiring BA = const one obtains the Alfvén speed
(Va = B/

√
4πρ). The profiles of U,Va, ρ, and F depend only

on the radial distance r = R/R� and are plotted in the left panels
of Figure 1: the bottom and top boundaries are at rbot = 1.004
and rtop = 19, the Alfvénic critical point is found at rA ≈ 17 by
choosing B� = 10 G. The small-scale incompressible velocity
(u) and magnetic (b) fluctuations are orthogonal to the radial
B and can be expressed through the usual Elsässer variables

z± = u ∓ b/
√

4πρ. We further simplify the equations by
replacing the nonlinear terms and the pressure term at each
position by a 2D shell model, so that the final equations read

∂z±
n

∂t
+ (U ± Va)

∂z±
n

∂r
− 1

4
(U ∓ Va)

(
1

ρ

dρ

dr

)
z±
n

+
1

4
(U ∓ Va)

(
1

ρ

dρ

dr
+ 2

1

A

dA

dr

)
z∓
n = T ±

npq − νk2
nz

±, (1)

where we take equal viscosity and resistivity (ν) and T ±
npq denotes

the nonlinear interactions. The index n labels modes having
perpendicular wavenumber kn = k02n, which define the radius
of concentric shells filling the (perpendicular) Fourier space.
The largest transverse scale follows the flux tube expansion
k0(r) = k0�/

√
A(r), wavevectors are given by k⊥ ≡ kn(r) =

k0(r)2n, so that our Fourier space shrinks with increasing r. Two
complex fields are assigned to each shell, z±

n (r, t) ≡ z±(kn, r, t).
They have the dimension of a velocity and |z±

n |2/2 are the
respective energies per unit mass in the shell n. We recall
that nonlinear interactions are local in Fourier space, Tnpq ∝
Σp,qknz

±
p z∓

q , with p ∼ q ∼ n (the explicit expression and
coefficients for the 2D shell model may be found in Giuliani &
Carbone 1998).

Open boundaries are used at rbot and rtop. The free parameters
are the input wave amplitude z+

�, the perpendicular injection
scales k0� (the forcing being imposed on 1, 2, 4k0�), and
the correlation time of the forcing signal Tf . We choose a
strong forcing, i.e., Tf � t0

NL by assigning: z+
� = 10 km s−1,

k0� = 2π/34,000 km−1, and Tf = 600 s. With these parameters
t0
NL = 1/k�

0 z+
� � 500 s � Tf .

Decreasing the free parameter B� shifts the profile of Va in
Figure 1, to lower values, thus decreasing rA and resizing the
regions where one linear term dominates over the other linear
terms (propagation, WKB, and reflection, respectively, the II, III,
and IV terms on the left-hand side of Equation (1)).

Starting from the solutions z±
n (r, t) of Equation (1) we define

frequency and wavenumber spectra. We denote by ẑ±
n (r, f ) their

Fourier transform with respect to time. From this we define
successively the spectra E±

n (f ) = E±(n, f ) and the associated
reduced spectra at each radial distance r:

E±
n (f ) = |ẑ±

n (r, f )|2/k⊥ (2)

E±
f (f ) = ∫

E±
n dk⊥ (3)

E±
⊥ (k⊥) = ∫

E±
n df, (4)

where we have omitted the dependence on r. Equation (2) is
the frequency spectrum of a given perpendicular mode which
yields the total energy E±(r) = ∑

n |z±
n |2 = ∫

E±
n dk⊥df .

Equations (3) and (4) define reduced spectra, which accordingly
yield

∫
E±

f df = ∫
E±

⊥dk⊥ = E± (hereafter we drop the
subscripts f, k⊥ when the dependence is explicit).

The correlation time t±cor(r, k⊥) is defined as the full width
half-maximum (FWHM) of the autocorrelation function AC(z±)
computed at each position r, while the nonlinear time t±NL(r, k⊥)
is the time average of the eddy turnover times built from the
Elsässer fields (Dobrowolny et al. 1980):

t±cor(k⊥) = FWHM[AC(z±)t ] (5)

t±NL(k⊥) = 〈1/(k⊥|z∓(k⊥)|)〉. (6)

Again we omitted the dependence on r, AC(z) = ∫
z(t)z(t −

t ′)dt ′ is the autocorrelation function and 〈· · ·〉 stands for a
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Figure 2. Top: perpendicular spectra E±(k⊥) at rtop. The input spectrum E+
0

at rbot is also shown (dashed line). Bottom: frequency spectra E±
n at rtop

for perpendicular wavenumbers k02n (with n increasing from top to bottom).
Symbols mark the CB width Δ±

CB (see the text).

(A color version of this figure is available in the online journal.)

time average. The amplitudes of the fluctuations are computed
by integrating along the perpendicular wavenumbers z± =√

Σn|zn(r, t)|2. The same definitions hold for u and b; the
latter will be expressed in velocity units from now on (i.e.,
b → b/

√
4πρ). The equality of the two timescales defines the

so-called critical balance (CB) condition:

t±cor(k) = t±NL(k), (7)

which is supposed to hold for strong turbulence. Since the
correlation time is the inverse of the width of the frequency
spectrum, we can define an equivalent CB width Δ±

CB = 1/t±NL.
According to anisotropic turbulence theories (Goldreich &

Sridhar 1995), this width constrains the frequency spectrum,
since at a given perpendicular scale k⊥ there is little energy for
f > ΔCB, while spectra are flat for f < ΔCB.

3. RESULTS

Figure 1 shows a snapshot of the amplitude of Alfvén waves
(top right) and of the kinetic and magnetic fluctuations (bottom
right). In the corona z+ � 1.5b, b � 1.5u. The profile of z+

follows the wind speed profile (background dotted line) and
is much larger the inward/reflected wave z−. z− is a smooth
function of distance, while z+ displays small-scale parallel
structure, seen also in the radial profiles of u and b.

The spectral densities versus perpendicular wavenumber and
frequency at rtop = 19 are summarized in Figure 2. In the
top panel, the time-averaged perpendicular spectra E±(k⊥)
are plotted along with the input spectrum at the base of the
chromosphere (E+

0 ). Both perpendicular spectra show a well-
developed power law that extends about two decades with a
slope −5/3. The ratio E+

⊥/E−
⊥ is about constant in the inertial

range. The input perpendicular spectrum E+
0 (dashed line)

appears in the middle of the inertial range of the spectra at rtop, as
the flux tube expansion has strongly expanded the perpendicular
scales between the surface and rtop (by a factor of 100).

In the bottom panels of Figure 2 the frequency spectra,
E±

n (f ), are plotted for each perpendicular mode n. Symbols
mark the equivalent CB width Δ±

CB. The E− spectra (right) are

Figure 3. Correlation time t±cor vs. nonlinear time t±NL for different heliocentric
distance (running from 2 R� to 19 R� from left to right on each curve) at
three perpendicular wavenumbers 2k0

⊥, 8k0
⊥, 128k0

⊥. The dotted line is the CB
condition (Equation (7)).

very well bounded by the CB condition, falling off sharply
in the weak turbulence range (f > Δ−

CB), and having flat
spectra in the strong turbulence range (f < Δ−

CB), with few
exceptions for large-scale eddies (n = 0, 1, 2). On the contrary,
E+

n has a substantial overexcitation of high frequencies at large
perpendicular scales and in the whole weak range, which reflects
the fine-scale (parallel) spatial structure of z+ seen in Figure 1.
This overexcitation has an approximate slope 1/f and extends
from the CB boundary to about 1/Tf � 2 × 10−3 Hz.

The slope of the frequency spectrum has been found to depend
on turbulence forcing strength Tf /t0

NL in homogenous shell
RMHD simulations (Verdini & Grappin 2012) and to extend
beyond forced scales. The situation is different here because
we cannot really control the forcing turbulence strength: the
nonlinear time for z+ depends on the reflected amplitude z−,
an output of the simulation. An a posteriori estimate yields a
turbulence strength t+

cor/t+
NL < 1 so that z+ is indirectly forced in

the weak regime. Coming back to the strong turbulence range,
one can see that large eddies have an approximate slope of 1/f
in both E− and E+: these low-frequency fluctuations are linearly
coupled by density gradients (reflection) that force the spectra
to resemble each other.

The turbulence regime at different heliocentric distances can
be identified in Figure 3, where we plot the correlation time ver-
sus the nonlinear time for three wavenumbers (2k0, 8k0, 128k0)
at heliocentric distances, running from left (r = 2) to right
(r = 19) along the solid lines. The CB condition (Equation (7))
is drawn as a dotted line and separates the strong and weak
regimes (above and below, respectively). The reflected wave z−
is always in a strong turbulence regime and follows the CB con-
dition at any position, except for a small offset at low wavenum-
bers due to the linear coupling (reflection) at large scale. On
the contrary the correlation time of z+ is almost horizontal, i.e.,
almost independent of the nonlinear time and of distance, and
lies entirely in the weak turbulence regime. Since tcor is the in-
verse of the width of the frequency spectrum, one can conclude
that the E+ spectrum does not change much as it propagates
outward, only becoming a bit narrower at large scales. Instead,
the E− spectrum widens while propagating backward from rA,
according to CB. Once it arrives at the TR it experiences strong
reflection and feeds the E+ spectrum; this can be argued by

3



The Astrophysical Journal Letters, 750:L33 (5pp), 2012 May 10 Verdini et al.

Figure 4. Reduced frequency spectra for Eu,b at rtop (solid gray and black line,
respectively) and input spectrum E+

0 at rbot (dashed line).

(A color version of this figure is available in the online journal.)

noting that t+
cor � t−cor at r = 2 (the low end of the curves). At

larger distances t+
cor � t−cor, showing that E+

n is wider than E−
n

in the whole corona, the difference owing to its high-frequency
overexcitation.

The 1/f spectrum appearing at large perpendicular scales in
E+ is thus made up of two parts, each occupying about one
decade from f � 10−5 Hz, which originate from two different
mechanisms: linear coupling with E− at low frequencies (the
strong turbulence range) and weak turbulent cascade at inter-
mediate frequencies. This is summarized in Figure 4 where the
reduced frequency spectra Eu,b(f ) of kinetic and magnetic en-
ergy at r = rtop are shown (along with the input spectrum at the
base of the chromosphere E+

0 ). The spectrum of Eb shows the
1/f slope inherited from the large-scale eddies in E+, in which
one can recognize the above two components, and a break ap-
pears at about f � 10−3 Hz where the slope switches to −2.
The break coincides with the width of the forcing spectrum
(1/Tf � 2 × 10−3 Hz) and the −2 slope is consistent with the
fall-off at high frequencies in Eb

n � E+
n . Note that linear prop-

agation alone would lead to a magnetic spectrum with slope
f −1/2 (not shown), thus nonlinear interactions are fundamental
to obtain the 1/f slope. The spectrum of Eu is practically iden-
tical to Eb for f � 10−4 Hz due to the same overexcitation in
the weak regime. For lower frequencies instead the slope of Eu

is flatter, having a value of about −1/2.

4. DISCUSSION

Why the 1/f extends down to low frequencies only in
Eb can be understood by examining the wave reflection at
the TR, where density gradients are higher. For frequencies
f � max[|dVa/dr|] � 2 Hz, one can write z− = −(1 − ε)z+,
where ε = V chrom

a /V cor
a � 1 is the Alfvén speed contrast

between the chromosphere and corona (Hollweg 1984; van
Ballegooijen et al. 2011; Verdini et al. 2012). At the TR, b � z±
and u � z±, thus reflection transfers the low-frequency large-
eddy spectrum of E− to Eb but not to Eu. In reality reflection
occurs in the whole low corona (for r � 3 R� at frequencies
f < 5 × 10−3 Hz) and is a continuous process. Moreover,
reflected waves are made of two components: a classical one,
propagating backward in the region U < Va and subject to

ringing in the low corona, and an anomalous component that
instead propagates outward with the mother wave (Velli et al.
1989; Hollweg & Isenberg 2007; Verdini et al. 2009). Nonlinear
interactions are not limited to the duration of the encounter of
colliding z± wavepackets, but part of them occur on the common
outward propagation path. This is why linear and also nonlinear
couplings affect the low tail of the 1/f spectrum.

Bearing in mind that z− is entirely generated by reflection
inside the solar atmosphere, we examine now what happens
if we increase the input turbulence strength (i.e., the control
parameter Tf /t0

NL) by either increasing the correlation time Tf

or decreasing the input nonlinear time t0
NL = 1/k0�z+

�. By
imposing a shorter input nonlinear time, no matter if through z+

�
or k0�, we increase the strength of the cascade for z−. The
strength of the z+ cascade will increase only slightly, since
the reflected wave will be damped more strongly, yielding
approximately the same t+

NL. The spectrum of E+ will thus be
affected only slightly, except that now nonlinear coupling will
dominate over reflection in the low corona, eroding the very low
frequency tail of the 1/f spectrum in Eb. If instead we choose
a longer correlation time at input, we increase the amount of
reflected waves thus also increasing the strength of the cascade
for z+. This time the high-frequency tail of the 1/f spectrum
will be eroded, since a stronger cascade reduces the energy
in the overexcited weak-turbulence regime of E+. Finally, one
can vary the importance of linear/nonlinear coupling through
the other free parameter B�. Taking a smaller chromospheric
magnetic field will lower the Alfvénic critical point, reducing
the importance of linear terms compared to the nonlinear ones
in Equation (1). The changes in the Eb spectrum are similar
to those discussed above for a shorter t0

NL. Note however that
halving B� moves rA to a distance of 8 R�, so that one is limited
to small variations of this parameter. A last remark concerns the
non-local couplings in the Fourier space that are neglected in
the shell model employed in this work. In principle, they could
change the perpendicular spectra and the strength of the cascade.
However, our understanding of the process of formation of the
1/f spectrum is that it comes from the different nature of the
two direct z− and z+ cascades, not because of an inverse cascade
as in the dynamo process. We expect these direct cascades not
to change when including nonlocal interactions.

The formation of the 1/f spectrum by nonlinear and linear
coupling in the sub-Alfvénic solar wind appears to be quite solid,
however its relation to the interplanetary spectrum observed
at 0.3 AU is not straightforward. Beyond rA the solar wind
expansion causes the rotation of the magnetic field, a slower
production of reflected waves, and a decrease of wave numbers
perpendicular to the radial direction (Grappin et al. 1993).
The latter two actually suggest a freezing of the spectra. On
the contrary, the magnetic field rotation causes instabilities
and wave coupling/decay that could modify the spectrum.
Numerical simulations of MHD equations in 1D and 2D
incorporating the effect of an expanding solar wind (Grappin
et al. 1993; Grappin & Velli 1996) suggest that the decay and
instability rates are delayed with respect to the non-expanding
case, so that a freezing of the advected spectra may be a
good approximation, at least until 0.3 AU. If one assumes no
further evolution, the double power law measured by Helios at
0.3 AU, may result from the combination of the parallel and
perpendicular reduced spectra. At low frequency the parallel
spectrum dominates with its characteristic slope −1, while at
higher frequencies its steep spectral slope (−2) is masked by
the more energetic perpendicular spectrum (with a −5/3 slope).
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Our theory might well be tested by the measurements of Solar
Probe Plus.

We thank E. Buchlin for useful suggestions while imple-
menting the background solar wind in the numerical code. A.V.
acknowledges support from the Belgian Federal Science Policy
Office through the ESA-PRODEX program. The research de-
scribed in this paper was carried out in part at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.
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