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ABSTRACT

We have developed a numerical model of flare heating due to the dissipation of Alfvénic waves propagating from
the corona to the chromosphere. With this model, we present an investigation of the key parameters of these waves
on the energy transport, heating, and subsequent dynamics. For sufficiently high frequencies and perpendicular
wave numbers, the waves dissipate significantly in the upper chromosphere, strongly heating it to flare
temperatures. This heating can then drive strong chromospheric evaporation, bringing hot and dense plasma to the
corona. We therefore find three important conclusions: (1) Alfvénic waves, propagating from the corona to the
chromosphere, are capable of heating the upper chromosphere and the corona, (2) the atmospheric response to
heating due to the dissipation of Alfvénic waves can be strikingly similar to heating by an electron beam, and (3)
this heating can produce explosive evaporation.
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1. INTRODUCTION

The standard model of solar flares, referred to as the CSHKP
model (Carmichael 1964; Sturrock 1966; Hirayama 1974;
Kopp & Pneuman 1976), explains many observational features
of flares, assuming that they are driven by magnetic
reconnection. After the reconnection event triggers, between
approximately 1030–1033 erg is released into the plasma,
driving intense heating and brightening across the electro-
magnetic spectrum (Fletcher et al. 2011). It is not clear,
however, how that energy is partitioned between in situ heating
of the corona, particle acceleration, and wave generation, nor to
what extent the observable features of a flare depend on the
balance between different types of coronal energy transport.

The collisional thick-target model (CTTM; Brown 1971)
assumes that the released energy goes into acceleration of
coronal particles, primarily electrons, to extremely high
energies. Down-going particles stream through the corona,
eventually colliding with the much denser chromosphere where
they lose energy through Coulomb collisions. This energy loss
in turn heats the chromosphere, driving evaporation into the
corona, heating the loop and producing the sharp rises in
intensities in the soft X-rays and extreme ultraviolet. Observa-
tions of hard X-ray (HXR) bursts in flares show without
question the braking of high energy electrons in the chromo-
sphere, with as many as 1036 s−1 inferred for large flares (e.g.,
Holman et al. 2003), however, these observations do not
exclude the possibility of additional energy transport by means
other than runaway particles. Indeed, the flux of high energy
electrons braking in the chromosphere presents several
challenges to the classic CTTM, discussed by Fletcher &
Hudson (2008), Brown et al. (2009), Krucker et al. (2011), and
Melrose & Wheatland (2014). It has been suggested that these
issues could potentially be resolved if some of the flare energy
were transported through the corona by waves, and used to
either accelerate electrons in higher density regions (Fletcher &
Hudson 2008) or reaccelerate energetic particles (Brown
et al. 2009; Varady et al. 2014).

In this paper, we examine Alfvénic waves as a heating
mechanism that may act separately or in addition to the thick-

target model. Magnetohydrodynamic waves (Alfvén 1942) are
observed ubiquitously in the corona (Tomczyk et al. 2007;
McIntosh et al. 2011), and often considered a leading candidate
to explain coronal heating (Klimchuk 2006) and the FIP effect
(Laming 2004, 2015). For flares, Alfvén and guided fast waves
produced during reconnection can deliver concentrated Poynt-
ing flux to the chromosphere (Birn et al. 2009; Russell &
Stackhouse 2013), where they damp in the cool, partially
ionized plasma (De Pontieu et al. 2001; Khodachenko
et al. 2004; Soler et al. 2015). Simulations of magnetic
reconnection show that Alfvén waves carry a large fraction of
the released energy ( 30%> ) in low β plasma (Kigure
et al. 2010). Previous studies by Emslie & Sturrock (1982)
and Russell & Fletcher (2013) have shown that energy
transport by Alfvénic waves can explain temperature minimum
heating observed in solar flares, where temperature rises
approximately 100 K (Machado et al. 1978; Emslie &
Machado 1979). Here, we emphasize the ability of Alfvénic
waves to heat the upper chromosphere.
Following the formalism of Russell & Fletcher (2013) and

references therein, we combine a hydrodynamic model with
energy transport through Alfvénic waves, whereby the waves
propagate from the reconnection site in the corona toward the
chromosphere. We present results from simulations that vary
the wave parameters in order to show directly that not only can
waves heat the temperature minimum region, but they can also
heat the upper chromosphere. Further, the heating can appear
extremely similar to an electron beam, and can drive explosive
evaporation. We comment on the implications for the
interpretation of observations of solar flares.

2. HEATING BY ALFVÉNIC WAVES

Emslie & Sturrock (1982) developed a model of Alfvén
wave heating to explain the observed temperature minimum
region heating observed in solar flares (Machado et al. 1978).
Using a WKB approximation, they derive an expression for the
period-averaged Poynting flux as a function of distance along a
magnetic flux tube with a finite resistivity, where decreases in
the Poynting flux are assumed to heat the plasma. We adopt

The Astrophysical Journal Letters, 818:L20 (5pp), 2016 February 10 doi:10.3847/2041-8205/818/1/L20
© 2016. The American Astronomical Society. All rights reserved.

1

mailto:jeffrey.reep.ctr@nrl.navy.mil
mailto:arussell@maths.dundee.ac.uk
http://dx.doi.org/10.3847/2041-8205/818/1/L20
http://crossmark.crossref.org/dialog/?doi=10.3847/2041-8205/818/1/L20&domain=pdf&date_stamp=2016-02-09
http://crossmark.crossref.org/dialog/?doi=10.3847/2041-8205/818/1/L20&domain=pdf&date_stamp=2016-02-09


their model, although we derive the WKB result using an
ambipolar resistivity instead of the classical resistivity to better
account for ion–neutral collisions in the chromosphere, which
are vitally important for wave damping (Piddington 1956;
Leake et al. 2014).

The Alfvénic waves are injected at the top of the model with
period-averaged Poynting flux S0, which damps according to
Equation (2.18) of Emslie & Sturrock (1982):
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where z is the curvilinear coordinate along the loop and LD(z) is
an effective damping length, given by
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where vA is the local Alfvén speed, c the speed of light, kx the
perpendicular wave number, ω the angular frequency, and ĥ
and h the perpendicular and parallel resistivities. The
perpendicular wave damping term includes Cowling resistivity
(e.g., Soler et al. 2013), such that
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We use the subscripts e, i, n, and t to refer to electrons, ions,
neutrals, and total, respectively. Each ν refers to a collision
frequency (the equations are listed in Russell & Fletcher 2013,
and note a typo in that work: nin should scale as Ti

1 2), while n
is the number density, ρ the mass density, ξ the ionization
fraction of hydrogen ( i tx r r= ), and niq w n= . The local
Alfvén speed is modified by the presence of neutrals:
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which reduces to the standard expression in the high frequency
limit and in the fully ionized case. The wave damping is due to
collisions between the different species, which decreases the
wave amplitude and heats the local plasma as the waves
propagate along the flux tube. As in Emslie & Sturrock (1982),
the heating term Q(z) is calculated from the decreasing
Poynting flux as

Q z
dS

dz
5( ) ( )= -

where the friction due to the Cowling term heats the ions and
the rest heats the electrons.

The WKB model is reasonably easy to implement within
existing codes, accommodates a wide range of wave properties,
has a small computational overhead, and is an accurate
approximation when used appropriately. The main restriction

is that the derivation assumes that the parallel wavelength,
v z2 A ( )p w, is less than or similar to the gradient length scale of

vA(z), making reflection negligible. This is a good approxima-
tion for Alfvén waves with frequencies of 1 Hz or higher once
they are in the chromosphere. Since the model does not account
for wave reflection at the transition region, which can be
substantial (Emslie & Sturrock 1982; Russell & Fletcher 2013),
we set S0 to produce a suitable Poynting flux immediately
below the transition region so that appropriate heating rates are
obtained for the chromosphere and accept that the model
underestimates the coronal heating associated with a given
level of chromospheric heating.

3. NUMERICAL MODEL

We have implemented the Alfvén heating model outlined in
Section 2 in the state-of-the-art Hydrodynamics and Radiation
Code (HYDRAD; Bradshaw & Mason 2003), which solves the
one-dimensional equations describing conservation of mass,
momentum, and energy for a two-fluid plasma confined to an
isolated magnetic flux tube (the current version’s equations are
detailed in Bradshaw & Cargill 2013). The code does not
evolve the magnetic field, so that rather than evaluating the
propagation and damping of Alfvénic waves, the code emulates
wave heating with the WKB approximation.
The model chromosphere is based on the VAL C model

(Vernazza et al. 1981), along with the approximation to
optically thick radiative losses prescribed by Carlsson &
Leenaarts (2012), and the effects of neutrals as detailed in Reep
et al. (2013). The electron beam heating model used in
Section 4 is based on Emslie (1978). For all of the simulations
here, we employ a full loop with length L2 60= Mm, initially
tenuous and in hydrostatic equilibrium, semi-circular and
oriented vertically, and assume that the heating is symmetric
about the apex.
An important feature of HYDRAD is its ability to solve for

non-equilibrium ionization states (Bradshaw & Mason 2003).
Since the resistivities depend on collisions between ions and
electrons as well as between ions and neutrals, it is critically
important to properly treat the ionization state of the plasma. In
particular, if the plasma is rapidly heated, the ionization state
may lag behind the actual temperature. HYDRAD uses
ionization and recombination rates taken from the CHIANTI
v.8 database (Dere et al. 1997; Del Zanna et al. 2015) to solve
for the ionization fraction of a given element. We treat radiative
losses using a full calculation with CHIANTI.
Equation (5) is taken as the heating term in the energy

equation. The ionization balance is solved with the following
equation (Bradshaw & Mason 2003):

Y

t s
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where Yi is the fractional population of an ionization state i of
element Y, and Ii and Ri are the ionization and recombination
rates from and to i (respectively). Solving this equation for
hydrogen gives the fractional population of ion and neutral
densities in the chromosphere that determine the damping
length.
To study the effects of chromospheric heating by Alfvénic

waves, we have run 24 numerical experiments. These
simulations cover a wide range of possible values, and allow
for systematic investigation of wave heating. We vary the wave
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frequency f 2w p= between [1, 10, 100]Hz and the
perpendicular wave number at the loop apex kx a, between [0,
10−5, 10−4, 4 10 4´ - ] cm−1. For evaluation of LD from
Equation (2), we assume that the magnetic field has a
photospheric value B 10000 = G, decreasing along the flux

tube with the pressure as B z B P z

P0

0.139

0( )( ) ( )= (as in Russell &

Fletcher 2013), which is constant in time. Since the density and
magnetic field vary with position, the Alfvén speed vA also
varies. We also adopt two different dependencies for kx as a

function of position: with k z kx x a
B z

B,
a

( )( ) ( )= (linear in B) for
magnetic expansion in one-dimension as in an arcade

geometry, and k z kx x a
B z

B,
a

( ) ( )= (as the square root) for

magnetic expansion in two-dimensions as in a flux tube that
expands radially with height. We do not scale the flux density
with the changing cross-sectional area implied from the
expansion of B(z).

4. RESULTS

We consider first a simulation with wave heating for
k 10x a,

5= - cm−1, f=10 Hz, and kx scaling linearly with the
magnetic field. The top row of Figure 1 shows the atmospheric
response to 10 s of heating, with an initial Poynting flux of
1010 erg s−1 cm−2 (note the x-axis is logarithmic and extends
from foot-point to foot-point). With increasing depth into the
chromosphere, the density rises and the ionization fraction

falls, increasing the effectiveness of ion–neutral friction. The
temperature minimum region is strongly heated, with a non-
negligible amount of heating in the upper chromosphere. As the
temperature rises slowly, so does the pressure, causing a gentle
evaporation to form in the transition region, reaching about
50 km s−1 in 10 s (the plot defines right-moving flows as
positive, left-moving as negative). The corona is essentially
unaffected by these waves, as they propagate through with only
minimal damping.
Contrast this now with a simulation that has a much higher

perpendicular wave number, k 4 10x a,
4= ´ - cm−1, but other-

wise equal properties, shown in the middle row of Figure 1.
Due to the increase in the wave number, the waves are strongly
damped in the upper atmosphere by collisions between ions
and electrons. The upper chromosphere is strongly heated, as
the Poynting flux sharply decreases across this layer so that
only minuscule amounts of energy are carried to the
temperature minimum region. Deeper in the chromosphere,
the heating falls off as the Poynting flux dissipates, and is not a
smooth function primarily due to changes in the ionization state
of the plasma. The pressure increase in the upper chromosphere
is sharp enough that material explosively evaporates, reaching
over 200 km s−1 in 10 s of heating. If the heating were
sustained, the density in the corona would increase signifi-
cantly, causing brightening across the extreme ultraviolet and
soft X-rays characteristic of flares.
For comparison, consider heating by an electron beam in the

CTTM (using the model of Emslie 1978 with a sharp cutoff).

Figure 1. A comparison between three scenarios: heating by Alfvénic waves with f=10 Hz, k 10x a,
5= - cm−1 (top row), k 4 10x a,

4= ´ - cm−1 (middle row), and
an electron beam with E 20 keVc = (bottom row). At a few selected time periods, the first column shows the total energy deposited in the loop, the second column the
electron temperature, and the third column the bulk flow velocity. Note that the x-axis is logarithmic in these plots, with the loop apex at 30 Mm. The velocity plots
define right-moving flows as positive, left-moving negative. The dashed vertical lines mark the initial transition region boundary.
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We adopt a low-energy cutoff E 20 keVc = , spectral index
5d = , and energy flux F 100

10= erg s−1 cm−2 (equal to the
Poynting flux considered), shown in the bottom row of
Figure 1. Compared to the previous simulation, slightly more
energy is deposited in the corona as the electrons collide with
ambient particles there, and a comparable amount of energy in
the chromosphere. The temperature in the upper chromosphere
and corona rises slightly higher than in the previous simulation,
while the evaporation again reaches about 200 km s−1. The
atmospheric response is nearly identical, and without a direct
measure of the energy input, would be difficult to distinguish
observationally.

The explanation for the different wave-driven behaviors—
namely gentle versus explosive evaporation—is straight-
forward. As seen in Equation (2), the damping length is
shorter for higher frequencies (which increase the damping by
perpendicular resistivity) or higher perpendicular wave num-
bers (which increase the damping by parallel resistivity). In this
regard, our simulation results are consistent with the findings of
Emslie & Sturrock (1982), who showed that waves with higher
frequency or perpendicular wave number do not penetrate the
deep chromosphere because they dissipate higher in the
atmosphere.

The top row of Figure 2 explicitly shows the change with
wave frequency, with plots of heating from three simulations
with frequencies of 1, 10, 100 Hz, all for the same wave
number, k 0x = . Note that without damping from kx, waves
barely heat the corona. Similarly, the effect of increasing kx for
a fixed frequency is seen by comparing the top center plot in
Figure 2 (k 0x = ), the top row of Figure 1 (k 10x a,

5= - cm−1),
the bottom left panel of Figure 2 (k 10x a,

4= - cm−1), and the
middle row of Figure 1 (k 4 10x a,

4= ´ - cm−1).
Finally, supposing that kx(z) does not vary linearly, but as the

square root of the magnetic field (k z k B z Bx x a a,( ) ( )= ), the
last two plots of Figure 2 repeat the simulations in Figure 1,
with otherwise identical parameters. The main difference is that
because the dependence on the magnetic field is reduced, the

wave number is higher at larger heights, so that the waves
dissipate more of their energy there.

5. CONCLUSIONS

The main conclusions are as follows:

(1) Flare-generated Alfvénic waves can heat not only the
temperature minimum region, but also the upper chromo-
sphere and corona.

(2) Heating by dissipation of Alfvénic waves can be very
similar to heating by electron beams (e.g., Brown 1971;
Emslie 1978).

(3) Since the upper chromosphere can be strongly heated,
Alfvénic waves can cause explosive evaporation. As with
beam heating models, the pressure in the chromosphere
rises sharply, causing a rapid expansion of material.

Ion–neutral friction damps down-going waves at the
temperature minimum region (as found by Emslie &
Sturrock 1982 and Russell & Fletcher 2013) and it becomes
important in the upper atmosphere for high frequencies. The
frequencies required to heat the upper chromosphere this way
are sensitive to the field strength, but in our simulations 10 Hz
waves produced a pronounced heating and 100 Hz waves were
almost entirely absorbed there. Millisecond spikes in radio and
HXRs (Kiplinger et al. 1983; Benz 1986) show that flares
produce such frequencies, and in situ observations of magneto-
spheric reconnection show generation of Alfvénic waves with
high frequencies (Keiling 2009). It is therefore credible that
Alfvénic waves excited during flares would also include a
component that heats the upper chromosphere by ion–neutral
friction.
Parallel resistivity can also have a significant role if the

incident waves have fine structure perpendicular to the
magnetic field (not considered by Russell & Fletcher 2013).
In our simulations, incident waves with k 10x a,

4 - cm−1

produced considerable heating in the upper chromosphere. This
wave number corresponds to a scale of 600 m, which is two
orders of magnitude larger than the coronal proton inertial

Figure 2. Energy deposition plots for wave heating with various parameters. The top row shows three simulations with k 0x = , i.e., without perpendicular damping,
and f 1, 10, 100 Hz= , respectively. The bottom left plot shows k 10x a,

4= - cm−1 and f=10 Hz. The last two plots are the same as the wave heating simulations in
Figure 1, except that their wave number scales as k z k B z Bx x a a,( ) ( )= . Note that the x-axis is logarithmic, as before.
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length (assuming n 109» cm−3) and at least two orders of
magnitude larger than the proton Larmor radius (assuming
T 4 107 ´ K and B 10 G). If Alfvénic waves are
produced in the corona by 3D collisionless reconnection, then
it is reasonable to expect they will inherit their scales from the
reconnection dynamics, which produce flux ropes with scales
of tens of ion inertial lengths (Daughton et al. 2011). On the
other hand, if waves are produced on larger scales, various
coronal processes act to reduce perpendicular scales, for
example: magnetic convergence and phase mixing (Russell &
Stackhouse 2013); Kelvin–Helmholtz and tearing instabilities
(Chaston & Seki 2010); Alfvénic cascades (Goldreich &
Sridhar 1995); and mapping along braided magnetic fields
(Pontin & Hornig 2015). Thus, there are grounds to expect that
part of the wave power produced by flares would arrive at the
chromosphere with scales that lead to resistive damping by
electron collisions.

Since the heating and evaporation is similar to electron
beams, can they be distinguished observationally? EUV and
SXR emissions, primarily dependent on density and tempera-
ture changes, must also be similar. A non-thermal HXR burst
indicates the presence of accelerated electrons, but if waves can
accelerate electrons in the chromosphere or low corona
(Fletcher & Hudson 2008; Melrose & Wheatland 2014), or if
waves travel along the same flux tubes as electrons, the
presence of an HXR burst alone does not rule out Alfvénic
wave heating. The similarity of the heating signatures is
particularly problematic for studies of nanoflares, where HXR
emission, if present, is too faint to be detected. For example,
Testa et al. (2014) recently investigated chromospheric heating
during nanoflares and found that IRIS observations are
consistent with heat input by nonthermal particles; our results
suggest that similar signatures could also be produced by wave
heating. New HXR instruments such as FOXSI (Krucker
et al. 2014) and NuStar (Harrison et al. 2013), with improved
sensitivity and spatial resolution, may help resolve this.

It seems possible that Alfvénic waves can play an important
role in flare heating. It is undeniable, however, that there are
many electrons being accelerated in flares, producing strong
HXR bursts, which are well correlated with the rise in SXR
emission (Dennis & Zarro 1993). Therefore, future work needs
to further establish the viability of this heating mechanism, but
also to what extent it operates in tandem with electron beams,
and how energy might be partitioned between them.
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