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ABSTRACT

It is shown that low-collisionality plasmas cannot support linearly polarized shear-Alfvén fluctuations above a
critical amplitude d b~^

-B B0
1 2, where β is the ratio of thermal to magnetic pressure. Above this cutoff, a

developing fluctuation will generate a pressure anisotropy that is sufficient to destabilize itself through the parallel
firehose instability. This causes the wave frequency to approach zero, interrupting the fluctuation before any
oscillation. The magnetic field lines rapidly relax into a sequence of angular zig-zag structures. Such a restrictive
bound on shear-Alfvén-wave amplitudes has far-reaching implications for the physics of magnetized turbulence in
the high-β conditions prevalent in many astrophysical plasmas, as well as for the solar wind at ∼1au where β1.
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1. INTRODUCTION

Shear-Alfvén waves are perhaps the most fundamental of all
oscillations in a magnetized plasma (Alfvén 1942). Their
existence provides a key distinction between neutral and
magnetized fluids, and they play a central theoretical role in
most sub-disciplines of plasma physics, including magnetized
turbulence (Goldreich & Sridhar 1995; Ng & Bhattacharjee
1996), the solar wind (Ofman 2010; Bruno & Carbone 2013),
the solar corona (Marsch 2006), and magnetic fusion
(Heidbrink 2008). This general applicability has led to intense
study of their basic properties (Cramer 2011). This research—
which includes studies ranging from kinetic physics and
damping mechanisms (Foote & Kulsrud 1979), to nonlinear
instabilities (Hamabata 1993; Medvedev et al. 1997) and the
effects of inhomogeneity (Velli 1993)—has in turn been vital
for the formulation of more applied theories. Interestingly, the
low-frequency shear-Alfvén wave specifically has emerged
relatively unscathed from this onslaught of theoretical inquiry
(but see Del Zanna et al. 2001; Cramer 2011; Bruno &
Carbone 2013 and references therein), apparently being much
less affected by kinetic damping mechanisms and other
nonideal effects than its fast and slow wave cousins (Foote &
Kulsrud 1979; Schekochihin et al. 2007).

In this Letter, we discuss a dramatic departure from this
behavior, showing that a high-beta collisionless plasma cannot
support linearly polarized shear-Alfvén (SA) fluctuations above
the critical amplitude,

( ) ( )d b~^
-B B , 10 max

1 2

where b pº p B8 0 0
2 is the ratio of thermal pressure to

magnetic pressure. This upper bound is independent of the
spatial scale of the perturbation (as long as it is above the ion
Larmor radius), and a similar restriction also holds in the
weakly collisional Braginskii limit (Braginskii 1965). For
fluctuations with d b^

-B B0
1 2, the magnetic field rapidly

forms a sequence of zig-zags—straight field-line segments

joined by sharp corners—maintaining this configuration with
the magnetic energy far in excess of the kinetic energy.
What is the cause of such dramatic nonlinear behavior, even

in regimes ( dB̂ B 10 for β?1) where linear physics might
appear to be applicable? In a magnetized plasma in which the
ion gyro-frequency Ωc is much larger than the collision
frequency νc, a decreasing (in time) magnetic field leads—due
to conservation of particle magnetic moment m = ^mv B22 —to
a decreasing pressure perpendicular to the magnetic field (p⊥),
while the parallel pressure (pP) increases. This anisotropy,

D º - <^p p p 0, neutralizes the restoring effects of magn-

etic tension, destabilizing the SA wave if pD < -p B 42 . This
well-studied instability is known as the parallel firehose
(Rosenbluth 1956; Chandrasekhar et al. 1958; Parker 1958;
Schekochihin et al. 2010). Now consider the ensuing dynamics
if we start with Δp=0, but with a field that, in the process of
decreasing due to the Lorentz force, generates a pressure
anisotropy that would be sufficient to destabilize itself. This is a
nonlinear effect not captured in linear models of SA waves. As
Δp approaches the firehose limit, the magnetic tension
disappears and the Alfvén frequency approaches zero, inter-
rupting the development of the wave. As shown below, because
the wave perturbs the field magnitude by dB̂2, an amplitude

d b^
-B B0

1 2 is sufficient to generate such a Δp in a
collisionless plasma. As the field decrease is interrupted at the
firehose stability boundary, the plasma self-organizes to
prevent further changes in field strength, leading to the
development of piecewise-straight (and therefore, tension-less)
field-line structures.
This Letter explores the physics of this stringent amplitude

limit, starting with simple analytic considerations. We then
numerically examine the nonlinear behavior of fluctuations
with amplitudes that exceed the limit and conclude with a
discussion of possible implications for astrophysical turbulence
and the solar wind. We focus primarily on the fate of an
isolated B⊥ perturbation—i.e., a linearly polarized standing
wave—because this case is the simplest physically. Both the
amplitude limit itself, and the plasma dynamics as the system
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approaches the firehose limit, are similar for traveling waves
and for an initial velocity perturbation. Circularly polarized
perturbations are, however, unaffected.

2. THEORY

On spatiotemporal scales larger than those relating to particle
gyromotion, the particle distribution function is approximately
gyrotropic. The magnetic field and first three moments of the
kinetic equation then satisfy (Kulsrud et al. 1983; Schekochihin
et al. 2010)

· ( ) ( )r r¶ +  =u 0, 2t

( · ) · ˆ ˆ

( )

r
p p

¶ +  = - + +  D +^

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥u u u bbp

B
p

B

8 4
,

3

t

2 2

( ) ( )¶ =  ´ ´B u B , 4t

· ( ) · · ( ˆ) · ˆ
ˆ · ( ˆ · ) ( )n

¶ +  +  +  + 

=  - D
^ ^ ^ ^ ^

^

u u b b

b b u

p p p q q

p p, 5

t

c

· ( ) · ( ˆ) · ˆ

ˆ · ( ˆ · ) ( )
  

 n

¶ +  +  - 

= -  + D

^u b b

b b u

p p q q

p p

2

2 2 , 6

t

c

where Gauss units are used, u and B are the plasma flow
velocity and magnetic field, ρ is the mass density, ∣ ∣º BB and
ˆ =b B B denote the field strength and direction, and q⊥ and qP
are heat fluxes along b̂ associated with the perpendicular and
parallel thermal energies, respectively. We also define
D º Dp p0 with = +^p p p2 3 30 (note Dp p0 for

b 1) and pr=v B 4A 0 . While Equations (2)–(6) will be
solved numerically below (Figure 1), in this section we make
various approximations to derive analytically the amplitude
limits and simplified wave equations. We consider two
approximations for Dp—one collisionless (n = 0c ), the other
weakly collisional (Braginskii; ∣ ∣ nW uc c )—neglecting
compressibility in both cases (valid for  b dB̂ B1, 10 ).

When <dB dt 0, the terms ˆ · ( ˆ · ) » -b b u B dB dt1 in
Equations (5)–(6) locally force D = D <p p 00 . Let us first
consider collisionless (n = 0c ) evolution of Δ, which is
strongly influenced by heat fluxes for b 1. As a simple
prescription for q̂ , , we use a successful Landau fluid (LF)
closure (Snyder et al. 1997), which (with D 1) posits
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Further assuming ˆ · · ˆ  ^ ^b bq q, , (valid at dB̂ B 10 )

and using  r r» =p p cs0
2, one obtains · ( ˆ) · + ^ ^bq q

ˆ ∣ ∣( )r r~ - ^b c k ps in the p⊥ Equation (5) (similarly for pP,
Equation (6)). This term, which models Landau damping of
temperature perturbations, suppresses spatial variation in p̂ ,

over the particle crossing time (∣ ∣ )t ~ -k csdamp
1. Thus, if

∣ ∣t  -udamp
1, the  ¹k 0 part of Δ is suppressed by

b~ ~ -v cA s
1 2 compared to its mean, and a simple model is

that q̂ , act to spatially average the Dp driving, or

ˆ · ( ˆ · ) [ ( )( )]
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Now consider the Braginskii limit, where collisions dominate
( n uc ). Equations (5) and (6) then give

ˆ · ( ˆ · ) ( )nD » - b b u , 9c
1

neglecting q̂ , for simplicity (valid for ∣ ∣ d ^ ^ up p cs, , ).
Furnished with approximations forDp (Equations (8) or (9)),

we now examine SA fluctuation dynamics. Consider a
background field ẑB0 , with perturbations perpendicular to ẑ
and the wavevector ˆ= + ^k z kk . Since SA waves are
unmodified by ¹k̂ 0 (the envelope is simply modulated in
the perpendicular direction) and we analyze linear polariza-
tions, we take x-directed perturbations that depend only on z
and t; ˆ ( ) ˆd= + ^B z xB B z t,0 , ( ) ˆ= ^u xu z t, . Neglecting
compressibility, the field perturbation d d= ^b B B0 satisfies
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Equation (10) illustrates that in the absence of a background Δ

linear long-wavelength SA, fluctuations are unmodified by
kinetic effects, while the parallel firehose occurs because the
coefficient of ( )d¶ bz

2 is negative for bD < -2 1.
Combining Equations (8) and (10), we see that if a

collisionless wave evolves such that
[ ( ) ( )] bá ñ = -B t B3 ln 0 2 , its restoring force disappears. As

we now explain, although the amplitude limit in each case is
the same, standing and traveling waves differ in why a decrease
in ( )á ñB t occurs. In a standing wave starting from a magnetic
perturbation, ( )á ñB t simply decreases as the wave evolves.
Thus, if [ ( )] ( )d b- á ñ » >B B b3 ln 0 3 0 4 20

2 (assuming
( ) ( ) d d~b b k z0 sin 10 ), an interruption occurs before a

quarter period, implying the maximum wave amplitude is

( )d
b»^ -

⎛
⎝⎜

⎞
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B

B

8

3
. 11

0 max

1 2

This limit is matched nearly perfectly by numerical LF
solutions (see Figure 2). A standing wave with an initial
velocity perturbation also satisfies the limit(11) and is
addressed in more detail below. For traveling waves, a crucial
role is played by the spatially dependent ( ) b-1 2 part of Δ,
which we neglected for convenience in deriving Equation (11).
This role is to decrease ( )á ñB t by damping the wave
nonlinearly. This “pressure-anisotropy damping” is related to
correlations between -B dB dt1 and Dp, which cause a
contribution to the rate of change of thermal energy of the
form ò~ D -xd p B dB dt1 (see Equations (4)–(6)). Because
this is positive for a traveling wave, the wave heats the plasma
and damps at the rate w d b~ bA

2 1 2 (where )w = k vA A . Without
any mechanism to isotropize the pressure, the decrease in

( )á ñB t causes áDñ to decrease as [ ( ) ( )]áDñ = á ñB t B3 ln 0
(Equation (8)), which slows the wave (see Figure 1(c)) before
stopping it completely if báDñ = -2 . The maximum
amplitude of a traveling wave is thus also given by
Equation (11), although the time to approach the limit is

2
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increased compared to the standing wave because of the time
required for the wave to damp nonlinearly.

A similar estimate of the amplitude limit with the Braginskii
closure (9), using ( )d w d¶ ~b bt A , yields

( ) ( ) ⟹ ( ) ( )b w
n

d d d
n
w

b~ -b b b
2

0 0 0 . 12A

c

c

A

3
max

1 2

Since n w 1c A for the validity of Braginskii’s approximation,
this condition is less stringent than Equation (11); note also that
it depends on kP (via wA) unlike the collisionless case. In the
Braginskii limit, traveling waves are again strongly damped (at
the rate ( )w n d b w~ bA c A

2 ) due to the spatial correlation of Δ
and -B dB dt1 .

3. NONLINEAR EVOLUTION AND
NUMERICAL RESULTS

The results above naturally invite the question: what happens
to fluctuations above the critical amplitude? Here we illustrate,
through numerical solutions and simple arguments, the
remarkable tendency of collisionless plasmas to minimize the
variation in B2 (Kunz et al. 2014; S. Melville & A. A.
Schekochihin 2016, in preparation; Melville et al. 2016;
Rincon et al. 2016). As a result, an initially sinusoidal db
relaxes into a square wave, corresponding to zig-zags in the
field lines. This peculiar behavior also emerges from
Equations (8) and (10), despite their simplicity, illustrating
the effect’s simple physical origins. Solutions using Braginskii
MHD differ in appearance and damp to fluctuations
with ( )d d<b b max .

We solve Equations (2)–(6) with the LF closure, using a
dealiased pseudo-spectral method and hyperviscously damping
all variables to remove energy just above the grid scale. Our
only further approximation is the identification of ∣ ∣k1 in
Equation (7) with ∣ ∣k1 z (valid for db 1). The full equations
solved are Equations (35)–(44) of Sharma et al. (2006) (except
we use ∣ ∣k1 z in Equation (7), not their kL). We do not
artificially limit the pressure anisotropy to the firehose limit, as
is common in previous turbulence studies (Sharma et al. 2006;
Santos-Lima et al. 2014). This is because the parallel firehose
instability—the cause of the effect—is in fact captured by the
fluid model. In addition, since finite Larmor radius effects
(FLRs) are not contained in this LF model, all scales in the
simulation are larger than the gyroradius.6

The evolution of a sinusoidal SA perturbation is shown in
Figure 1, starting with a perturbation in either (a) B, (b) u, or
(c) a traveling wave. For comparison, we show solutions of the
nonlinear wave Equation (10) in panels (d)–(e). In panels (b)–
(c), Δ is limited at the mirror threshold bD = 1 , since

>dB dt 0 in some regions (see the discussion below). We see
from Figures 1(a)–(d) that collisionless waves—both standing
and traveling—generically relax to a stable sequence of near-
perfect stair steps. The spatial scale of the jumps is set by the
numerics, so would likely be determined by FLR effects in
reality. The basic origin of such structures can be understood
by observing that if báDñ = -2 in Equation (10),

( ) ( ) ( )d b d¶ + áDñ ¶ =b b2 0z z
2 2 . Neglecting residual spatial

variation in Δ (this decreases after wave interruption because
-B dB dt1 decreases), the remainder on the right-hand side

of Equation (10) is ( )d~¶ bz
2 3 , which lowers maxima of db2

while increasing minima, leading to constant-B steps. With
the Braginskii closure (Figure 1(e)), in contrast to the
collisionless case, regions of small db have smaller ∣ ∣D
and thus decrease to zero before bD = -2 . Further,
since the nonlinearity is diffusive, the field decays (over the
timescale ( )t b d n~ b 0 cdecay

2 ), leaving7 small ( )d d<b b max

fluctuations.

Figure 1. Evolution of d =b B Bx z0 in a b = 100 plasma. Panels (a)–(c) show
solutions of the full collisionless LF Equations (2)–(6) in one dimension,
starting from (a) ( ) ( )d p= -b z0 0.5 cos 2 , (b) ( ) ( )p= -u v z0 0.5 sin 2x A (line-
arly, this ( )u 0x leads to ( )d p= -b z0.5 cos 2 ), and (c) a traveling wave

( ) ( ) ( )d p= - =b u v z0 0 0.5 sin 4x A . Panels (d) and (e) show standing-wave
solutions of the nonlinear wave Equation (10), with (d) the collisionless closure
(8), and (e) the Braginskii closure (9) (with w b n = 100A c ). Each solution uses
512 Fourier modes. The figures show db at t=0 (black dotted line; ( )u 0x is
shown in (b)), db at t=t 2A (blue dashed line; t=t 3 2A in (c)), db at

t=t 3 A (red solid line), and u vx A at t=t 3 A (black solid line; only in (a)–(c)),
where t p w= 2A A. The circles in (c) show the same position on the wave as it
evolves, illustrating its decrease in speed as the wave damps. Note the strong
damping of velocity at late times in (a)–(c) (the wave is not fully interrupted by
the final time shown in (c)), and the decay of the perturbation to ( )d d<b b0 max
by t=t 3 A in (e). The highly nonlinear behavior in each case shown here
starkly contrasts with the almost perfectly linear evolution of an MHD SA
fluctuation at these parameters.

6 Firehose fluctuations are damped due to hyperviscosity, which thus
determines the scale of the fastest growing firehose modes.

7 This estimate for tdecay can be derived by setting Δ (Equation (9)) equal to
the firehose limit in Equation (10) and solving the resulting differential
equation. It is well matched by numerical solutions.
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Figure 2 confirms the predictions of Equation (11), illustrat-
ing essentially perfect agreement for b 10. At b 10 large-
amplitude waves are still interrupted in the LF model, although
solutions of Equation (10) (which required db 1) deviate
from Equation (11). We have also confirmed the scaling (12)
for Braginskii MHD (not shown).

So far, we have considered only 1D evolution within the LF
model—what caveats should be applied for more realistic
conditions? The reader may wonder about the imposition of a
mirror (but no firehose) limit in Figures 1(b)–(c). This is
required because our model cannot capture the mirror
instability, which gives rise to growing modes at  k̂ k .
However, kinetic results (Kunz et al. 2014; Hellinger &
Trávníček 2015; Rincon et al. 2015; Melville et al. 2016) show
that mirror fluctuations limit Δ by trapping particles, allowing
B to continue increasing while maintaining bD = 1 . Further,
the temporal growth of the mirror instability
∣ ∣ (∣ ∣ )d ~ uB B t0

2 3 (Rincon et al. 2015) is slow enough that
mirrors generated by an SA wave will not saturate and
significantly scatter particles if ( ) <u v0 1x A . Thus, following a
u perturbation with >-B dB dt 01 , mirrors grow to limit

bD = 1 ; then, once <-B dB dt 01 , Δ immediately starts
decreasing, while the (small) mirror fluctuations decay at the
rate g b~ Wc (Melville et al. 2016). This implies that SA
waves cannot circumvent the limit (11) by starting from B=0
or D > 0 (see Figure 1(b)). Oblique firehose fluctuations
(Yoon et al. 1993; Hellinger & Trávníček 2008) are also not
captured by our model, and these may change the nonlinear
behavior by scattering particles (Kunz et al. 2014), potentially
disrupting the angular field structure.8 Again, however, they
cannot circumvent the amplitude limit itself; they become
active only once bD < -2 , when the wave restoring force
has already disappeared. We thus stress that, although the
nonlinear outcome of wave interruptions (Figure 1) may be
modified by the addition of other kinetic physics, our basic
result—that collisionless SA fluctuations cannot exist in their
linear wave form above the limit (11)—is robust. Its derivation
is not sensitive to details of heat fluxes or particle scattering at
the microinstability boundaries, relying purely on the physics

of pressure-anisotropy generation due to magnetic moment
conservation.

4. IMPLICATIONS

Given the ubiquity of Alfvén waves in space and
astrophysical plasmas, the implications of the stringent
constraint (1) on their amplitude at high β may be dramatic,
with applications ranging from the intracluster medium
(Zhuravleva et al. 2014), to hot (collisionless) accretion disks
(Quataert & Gruzinov 1999) and the solar wind near Earth
(Bruno & Carbone 2013). We leave much of the discussion of
these applications to future work, briefly considering possible
observational evidence for the effect in the solar wind and
the implications for magnetized turbulence (Goldreich &
Sridhar 1995). Note that, in contrast to results presented here,
linear damping of long-wavelength, low-frequency SA waves
at high β is negligible if b wW - 1c A

1 (Foote & Kuls-
rud 1979; Achterberg 1981; Cramer 2011).
Alfvén waves are fundamental to solar wind physics, and our

results are most relevant to regions where b 1, at solar radii
~1au (Mullan & Smith 2006; Bruno & Carbone 2013).
Specifically, propagation of large-amplitude SA waves into a
b 1 plasma may naturally form rotational field-line disconti-

nuities (Borovsky 2008; Miao et al. 2011), heating the plasma
as the wave interrupts. An interesting observational feature that
may be related to this is the appearance of a distinct,
magnetically dominated, population of fluctuations at increas-
ing solar radii (Tu & Marsch 1991; Bruno et al. 2007; Bruno &
Carbone 2013). This population’s sudden appearance across a
range of latitudes (Bavassano et al. 1998) suggests it does not
arise through continuous evolution of turbulence (see Figure 2
of Bruno et al. 2007). Such characteristics would be expected
from SA wave interruption in regions where b 1, a scenario
that is also consistent with the observed excess of magnetic
energy (Goldstein et al. 1995; Roberts 2010; Chen et al. 2013;
Oughton et al. 2015). A prediction of our scenario is a
correlation between β and regions with magnetically domi-
nated, rotationally discontinuous, structures.
The implications of our results for magnetized turbulence

in collisionless plasmas are potentially dramatic. A
striking conclusion, which holds independently of the
details of interrupted structures, is that perturbations in a
collisionless plasma with energy densities on the order of B0

2

(i.e., ∣ ∣ ~u vA) are immediately damped—that is, the plasma
behaves as a fluid with Reynolds number  1. Where does this
perturbation energy go? Because of the same energy
transfer term responsible for damping traveling waves,

ò¶ ~ D -xE d p B dB dtt th
1 , if D < 0, a decreasing field

directly transfers large-scale kinetic energy into plasma heating
(Sharma et al. 2006). A turbulent cascade is thus no longer
necessary for collisionless plasmas to absorb the energy input
by a continuous mechanical forcing (Kunz et al. 2010), and it is
unclear if any of the energy provided on large scales cascades
to smaller scales as traditionally assumed. However, such
physics is well beyond the scope of this work and we conclude
here by simply reiterating that the immediate disruption of SA
fluctuations when d b^

-B B0
1 2 severely limits the applica-

tion of standard magnetized turbulence phenomenologies
(Goldreich & Sridhar 1995) to high-β collisionless plasmas.
A variety of fundamental questions about the nonlinear

interruption of shear-Alfvén waves remain for future studies,
particularly concerning higher-dimensional microinstabilities

Figure 2. Numerical confirmation of the scaling (11). A red square indicates
that an initial magnetic perturbation was interrupted before a half cycle (as in
Figure 1), while a blue circle indicates that the perturbation flipped polarity
without interruption. Large filled symbols show results from the LF
Equations (2)–(6), while small hollow symbols show solutions of Equation (10)
with the collisionless closure (8). The dashed line is d b= -b 20

1 2.

8 The angular magnetic structures themselves may also scatter particles, with
n ~ k cc s. This could cause faster damping of a wave once it hits the

interruption limit and becomes square (or perhaps earlier for traveling waves,
which can become square before bD = -2 ; see Figure 1(c)).
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(e.g., oblique firehose). Fully kinetic simulations will be key to
understanding this physics better. Given the robustness and
generality of our result, its appearance in a variety of models,
and the stringent nature of the d b^

-B B0
1 2 condition, we

anticipate a range of future applications to heliospheric,
astrophysical, and possibly laboratory (Forest et al. 2015;
Gekelman et al. 2016) plasmas.
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grants (A.A.S.).

REFERENCES

Achterberg, A. 1981, A&A, 98, 161
Alfvén, H. 1942, Natur, 150, 405
Bavassano, B., Pietropaolo, E., & Bruno, R. 1998, JGR, 103, 6521
Borovsky, J. E. 2008, JGRA, 113, A08110
Braginskii, S. I. 1965, RvPP, 1, 205
Bruno, R., & Carbone, V. 2013, LRSP, 10, 2
Bruno, R., D’Amicis, R., Bavassano, B., Carbone, V., & Sorriso-Valvo, L.

2007, AnGeo, 25, 1913
Chandrasekhar, S., Kaufman, A. N., & Watson, K. M. 1958, RSPSA, 245, 435
Chen, C. H. K., Bale, S. D., Salem, C. S., & Maruca, B. A. 2013, ApJ, 770, 125
Cramer, N. F. 2011, The Physics of Alfvén Waves (New York: Wiley)
Del Zanna, L., Velli, M., & Londrillo, P. 2001, A&A, 367, 705
Foote, E. A., & Kulsrud, R. M. 1979, ApJ, 233, 302
Forest, C. B., Flanagan, K., Brookhart, M., et al. 2015, JPlPh, 81, 345810501
Gekelman, W., Pribyl, P., Lucky, Z., et al. 2016, RScI, 87, 025105
Goldreich, P., & Sridhar, S. 1995, ApJ, 438, 763

Goldstein, B. E., Smith, E. J., Balogh, A., et al. 1995, GeoRL, 22, 3393
Hamabata, H. 1993, ApJ, 406, 563
Heidbrink, W. W. 2008, PhPl, 15, 055501
Hellinger, P., & Trávníček, P. M. 2008, JGRA, 113, A10109
Hellinger, P., & Trávníček, P. M. 2015, JPlPh, 81, 305810103
Kulsrud, R. M. 1983, in Handbook of Plasma Physics, ed. R. N. Sagdeev &

M. N. Rosenbluth (Princeton, NJ: Princeton Univ. Press), 115
Kunz, M. W., Schekochihin, A. A., Cowley, S. C., Binney, J. J., &

Sanders, J. S. 2010, MNRAS, 410, 2446
Kunz, M. W., Schekochihin, A. A., & Stone, J. M. 2014, PhRvL, 112, 205003
Marsch, E. 2006, LRSP, 3, 1
Medvedev, M. V., Shevchenko, V. I., Diamond, P. H., & Galinsky, V. L. 1997,

PhPl, 4, 1257
Melville, S., Schekochihin, A. A., & Kunz, M. W. 2016, MNRAS, 459, 2701
Miao, B., Peng, B., & Li, G. 2011, AnGeo, 29, 237
Mullan, D. J., & Smith, C. W. 2006, SoPh, 234, 325
Ng, C. S., & Bhattacharjee, A. 1996, ApJ, 465, 845
Ofman, L. 2010, LRSP, 7, 4
Oughton, S., Matthaeus, W. H., Wan, M., & Osman, K. T. 2015, RSPTA, 373,

20140152
Parker, E. N. 1958, PhRv, 109, 1874
Quataert, E., & Gruzinov, A. 1999, ApJ, 520, 248
Rincon, F., Califano, F., Schekochihin, A. A., & Valentini, F. 2016, PNAS,

113, 3950
Rincon, F., Schekochihin, A. A., & Cowley, S. C. 2015, MNRAS, 447, L45
Roberts, D. A. 2010, JGRA, 115, A12101
Rosenbluth, M. N. 1956, Los Alamos Sci. Lab. Rep. LA-2030
Santos-Lima, R., de Gouveia Dal Pino, E. M., Kowal, G., et al. 2014, ApJ,

781, 84
Schekochihin, A. A., Cowley, S. C., & Dorland, W. 2007, PPCF, 49, A195
Schekochihin, A. A., Cowley, S. C., Rincon, F., & Rosin, M. S. 2010,

MNRAS, 405, 291
Sharma, P., Hammett, G. W., Quataert, E., & Stone, J. M. 2006, ApJ, 637, 952
Snyder, P. B., Hammett, G. W., & Dorland, W. 1997, PhPl, 4, 3974
Tu, C.-Y., & Marsch, E. 1991, AnGeo, 9, 319
Velli, M. 1993, A&A, 270, 304
Yoon, P. H., Wu, C. S., & de Assis, A. S. 1993, PhFlB, 5, 1971
Zhuravleva, I., Churazov, E., Schekochihin, A. A., et al. 2014, Natur, 515, 85

5

The Astrophysical Journal Letters, 830:L25 (5pp), 2016 October 20 Squire, Quataert, & Schekochihin

http://adsabs.harvard.edu/abs/1981A&amp;A....98..161A
http://dx.doi.org/10.1038/150405d0
http://adsabs.harvard.edu/abs/1942Natur.150..405A
http://dx.doi.org/10.1029/97JA03029
http://adsabs.harvard.edu/abs/1998JGR...103.6521B
http://dx.doi.org/10.1029/2007JA012684
http://adsabs.harvard.edu/abs/2008JGRA..113.8110B
http://adsabs.harvard.edu/abs/1965RvPP....1..205B
http://dx.doi.org/10.12942/lrsp-2013-2
http://adsabs.harvard.edu/abs/2013LRSP...10....2B
http://dx.doi.org/10.5194/angeo-25-1913-2007
http://adsabs.harvard.edu/abs/2007AnGeo..25.1913B
http://dx.doi.org/10.1098/rspa.1958.0094
http://adsabs.harvard.edu/abs/1958RSPSA.245..435C
http://dx.doi.org/10.1088/0004-637X/770/2/125
http://adsabs.harvard.edu/abs/2013ApJ...770..125C
http://dx.doi.org/10.1051/0004-6361:20000455
http://adsabs.harvard.edu/abs/2001A&amp;A...367..705D
http://dx.doi.org/10.1086/157391
http://adsabs.harvard.edu/abs/1979ApJ...233..302F
http://dx.doi.org/10.1017/S0022377815000975
http://adsabs.harvard.edu/abs/2015JPlPh..81e3401F
http://dx.doi.org/10.1063/1.4941079
http://adsabs.harvard.edu/abs/2016RScI...87b5105G
http://dx.doi.org/10.1086/175121
http://adsabs.harvard.edu/abs/1995ApJ...438..763G
http://dx.doi.org/10.1029/95GL03183
http://adsabs.harvard.edu/abs/1995GeoRL..22.3393G
http://dx.doi.org/10.1086/172468
http://adsabs.harvard.edu/abs/1993ApJ...406..563H
http://dx.doi.org/10.1063/1.2838239
http://adsabs.harvard.edu/abs/2008PhPl...15e5501H
http://dx.doi.org/10.1029/2007JD009333
http://adsabs.harvard.edu/abs/2008JGRA..11310109H
http://dx.doi.org/10.1017/S0022377814000634
http://dx.doi.org/10.1111/j.1365-2966.2010.17621.x
http://adsabs.harvard.edu/abs/2011MNRAS.410.2446K
http://dx.doi.org/10.1103/PhysRevLett.112.205003
http://adsabs.harvard.edu/abs/2014PhRvL.112t5003K
http://dx.doi.org/10.12942/lrsp-2006-1
http://adsabs.harvard.edu/abs/2006LRSP....3....1M
http://dx.doi.org/10.1063/1.872356
http://adsabs.harvard.edu/abs/1997PhPl....4.1257M
http://dx.doi.org/10.1093/mnras/stw793
http://adsabs.harvard.edu/abs/2016MNRAS.459.2701M
http://dx.doi.org/10.5194/angeo-29-237-2011
http://adsabs.harvard.edu/abs/2011AnGeo..29..237M
http://dx.doi.org/10.1007/s11207-006-2077-y
http://adsabs.harvard.edu/abs/2006SoPh..234..325M
http://dx.doi.org/10.1086/177468
http://adsabs.harvard.edu/abs/1996ApJ...465..845N
http://dx.doi.org/10.12942/lrsp-2010-4
http://adsabs.harvard.edu/abs/2010LRSP....7....4O
http://dx.doi.org/10.1098/rsta.2014.0152
http://adsabs.harvard.edu/abs/2015RSPTA.37340152O
http://adsabs.harvard.edu/abs/2015RSPTA.37340152O
http://dx.doi.org/10.1103/PhysRev.109.1874
http://adsabs.harvard.edu/abs/1958PhRv..109.1874P
http://dx.doi.org/10.1086/307423
http://adsabs.harvard.edu/abs/1999ApJ...520..248Q
http://dx.doi.org/10.1073/pnas.1525194113
http://adsabs.harvard.edu/abs/2016PNAS..113.3950R
http://adsabs.harvard.edu/abs/2016PNAS..113.3950R
http://dx.doi.org/10.1093/mnrasl/slu179
http://adsabs.harvard.edu/abs/2015MNRAS.447L..45R
http://dx.doi.org/10.1029/2009JA015120
http://adsabs.harvard.edu/abs/2010JGRA..11512101R
http://dx.doi.org/10.1088/0004-637X/781/2/84
http://adsabs.harvard.edu/abs/2014ApJ...781...84S
http://adsabs.harvard.edu/abs/2014ApJ...781...84S
http://dx.doi.org/10.1088/0741-3335/49/5A/S16
http://adsabs.harvard.edu/abs/2007PPCF...49..195S
http://dx.doi.org/10.1111/j.1365-2966.2010.16493.x
http://adsabs.harvard.edu/abs/2010MNRAS.405..291S
http://dx.doi.org/10.1086/498405
http://adsabs.harvard.edu/abs/2006ApJ...637..952S
http://dx.doi.org/10.1063/1.872517
http://adsabs.harvard.edu/abs/1997PhPl....4.3974S
http://adsabs.harvard.edu/abs/1991AnGeo...9..319T
http://adsabs.harvard.edu/abs/1993A&amp;A...270..304V
http://dx.doi.org/10.1063/1.860785
http://adsabs.harvard.edu/abs/1993PhFlB...5.1971Y
http://dx.doi.org/10.1038/nature13830
http://adsabs.harvard.edu/abs/2014Natur.515...85Z

	1. INTRODUCTION
	2. THEORY
	3. NONLINEAR EVOLUTION AND NUMERICAL RESULTS
	4. IMPLICATIONS
	REFERENCES



