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Abstract
The discovery of graphene, a singlemonolayer of graphite, has provided an experimental
demonstration of stability of 2D crystals. Although thermal fluctuations of such crystals tend to
destroy the long-range order in the system, the crystal can be stabilized by strong anharmonicity
effects. This competition is the central issue of the crumpling transition, i.e., a transition betweenflat
and crumpled phases.We show that anharmonicity-controlled fluctuations of a graphenemembrane
around equilibrium flat phase lead to unusual elastic properties. In particular, we demonstrate that
stretching ξ of a flake of graphene is a nonlinear function of the applied tension at small tension:

( )x sµ h h-2 and ( )x sµ h h-8 for clean and strongly disordered graphene, respectively. Conventional
linearHooke’s law, x sµ , is realized at sufficiently large tensions:  *s s ,where *s depends both on
temperature and on the disorder strength.

Hooke’s law (HL)—introduced by Robert Hooke
about 350 years ago—states that the force needed to
extend or compress an elastic body by some distance is
proportional to that distance. Conventional theory of
elasticity predicts that this law is fulfilled for low fields
(in the so-called ‘elastic range’ of tensions) and gets
violated at sufficiently large tensions.

The goal of this Letter is to explore stretching of
graphene, a famous two-dimensional (2D) material
[1–10], as a reaction on applied tension. Measurement
of the elasticity of free-standing graphene is accessible
to current experimental techniques [11–15]. Remark-
ably, we find that, for graphene, HL fails even in the
limit of the infinitesimally small tension. The under-
lying physics has a very close relation to the well
known problem of thermodynamic stability of 2D
crystals [16, 17].

Free-standing graphene is a remarkable example
of an elastic crystalline 2D membrane with a high
bending rigidity  1 eV. The most important fea-
ture distinguishing such a membrane from conven-
tional 2D semiconductor systems is the existence of
specific type of out-of-plane phonon modes—flexural
phonons (FP) [18].

In contrast to in-plane phonons with the linear
dispersion, the FP are very soft, w µ qq

2, and, conse-
quently, the out-of-plane thermal fluctuations are
unusually strong and tend to destroy graphene mem-
brane by driving it into the crumpled phase [18]. The
competing effect is the anharmonicity that plays here a
key role.

This question was intensively discussed more than
two decades ago [18–35] in connection with biological
membranes, polymerized layers, and inorganic sur-
faces. The interest to this topic has been renewedmore
recently [36–43] after discovery of graphene. It was
found [19–25] that the anharmonic coupling of in-
plane and out-of-plane phonons stabilizes the mem-
brane for not too high temperatures T. This is con-
nected with a strong renormalization of the bending
rigidity [24, 26, 32],   µ h-q q, for 0,q

with a certain critical index η. Due to the high bare
value of ù, clean graphene remains flat up to all realis-
tic temperatures. The critical exponent η was deter-
mined within several approximate analytical schemes
[22, 24, 25, 32, 36]. Numerical simulations for a 2D
membrane embedded in 3D space yield
h = 0.60 0.10 [30] and h = 0.72 0.04 [35].
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In a recent paper [44], we have developed a theory
of rippling and crumpling in disordered free-standing
graphene.We have shown that random fluctuations of
the membrane curvature caused by static disorder
may strongly affect properties of the membrane. We
have derived coupled renormalization-group (RG)
equations describing the combined flow of ù and dis-
order strength b, determined the phase diagram (flat
versus crumpled) in the ( ) b, plane, and explored the
rippling in the flat phase.

In the present letter, we explore the fate of HL in
clean and disordered graphene.We find that linear HL
breaks down both for clean and disordered cases, so
that deformation of the membrane subjected to a
small stretching tension s > 0 scales as sD µ aL ,
with a non-trivial exponent α. In the opposite case,
s < D <L0, 0, the membrane undergoes a buckling
transition [23]. We obtain the critical index α that
turns out to be different for clean and disordered cases.
Our findings imply that for sufficiently strong disorder
the anomalous elasticity of graphene is fully deter-
mined by static random deformations—ripples. The
non-linearity of elasticity of graphene found in this
work is in agreement with recent experimental find-
ings [14, 15]. Related theoretical results have been
recently obtained for clean membranes in the ribbon
geometry [45] and by numerical simulations [46].

We consider a D2 membrane embedded in the d-
dimensional space ( >d 2). The starting point of our
analysis is the energy functional

( ) ( )

( )


ò

m
d

l

= D + ¶ ¶ -

+ ¶ ¶ -

a b ab

g g

⎡
⎣⎢

⎤
⎦⎥

E x

D

r r r

r r

d
2 4

8

2 2 2

2

which can be obtained from the general gradient
expansion of elastic energy [21] by using a certain
rescaling of coordinates (see discussion in [44]). Here
ù is the bare bending rigidity, while μ and λ are in-
plane coupling constants. The d-dimensional vector

( )=r r x describes a point on the membrane surface
and depends on the D2 coordinate x that parametrizes
the membrane. The vector r can be split into

x= + +r x u h, where vectors ( )= u uu , ,1 2

( )= ¼h hh , , d1 c
represent in-plane and out-of-plane

displacements, respectively, and = -d d 2.c The
stretching factor ξ is equal to unity in the mean-field
approximation but gets reduced due to fluctuations.
In terms of u h, , and ξ, the energy becomes
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where ˜ x=u u and ( ˜ )=E E u h,0 0 describes the
energy of in-plane and out-of-plane fluctuation. We
proceed now to include the static disorder. As shown
in [44], the relevant disorder is produced by a random
curvature. The energy of fluctuations including such

disorder reads [28]
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Here ( )= ¶ + ¶ + ¶ ¶ab a b b a a bu u u h h 2 is the
strain tensor and ( )b b= x is a random vector
with Gaussian distribution ( )b = b

-P Z exp1

( ) ( )òb-⎡⎣ ⎤⎦b x x1 2 d ,D2 where b is the disorder

strength and bZ is a normalization factor. For b = 0,
( )E u h,0 coincides with the conventional expression

for elastic energy of nearlyflatmembrane [18].
The second term in the square brackets in

equation (1) describes the coupling between fluctua-
tions and stretching. Such a coupling leads to shrink-
ing of the membrane in the x-plane. As a result, the
optimal value of ξ deviates from the mean-field value
x = 1 due to the fluctuations. The size of the mem-
brane with fluctuations R is related to the size L of the
membrane without fluctuations as follows: x=R L.
Hence, the ‘projected’ area of the membrane
reads x=A L .2 2

For s = 0, the equilibrium value of ξ reads6 [44]:

( )x = - á¶ ¶ ña ah h1 2. 32

Here angular brackets denote the Gibbs averaging.
Application of tension σ to the membrane leads to the
increase of x2, as compared to equation (3). Below we
calculate function ( )x s , both for clean and disordered
cases.

Clean case (b=0). For s ¹ 0, the propagator of
h-modes calculated in the harmonic approximation is
given by (see footnote 6 for technical details)

( ) ( ) ( )p d dá ñ = - ¢a b
ab- ¢h h Gq q2 , 4q q q

2 0

where ( ) s= +G T q q .q
0 4 2 Tension σ is given by a

derivative of the free energy F with respect to A [25],
s = ¶ ¶F A, and is related to ξ as (see footnote 6)

( )( ) ( )s m l x= + - + á¶ ¶ ña ah h1 2 . 52

Conventional HL can be derived from equation (5) by
neglecting the contribution of fluctuations and assum-
ing that ξ is close to unity: ( )s x» -k 1 .conv 0 Here

( )m l= + »k 2 400 N0 m–1 is in-plane stiffness pre-
dicted for flat graphene [47, 48] and measured in
[11, 12]. The main purpose of the further discussion is
to demonstrate that the contribution of fluctuations is
of crucial importance, so that this law fails in the limit
s  0, where stretching turns out to be a nonlinear
function of s.

For large momenta, > sq q , where s=sq ,
Green’s function is approximately given by

=G T q .q
0 4 The strong infrared singularity

µG q1q
0 4 leads to a logarithmic divergence of

á¶ ¶ ña ah h and, consequently, in view of equation (3),
to the renormalization of ξ [44]. Hence, ξ becomes
scale-dependent: x x L, where ~ -L q 1. At finite q,
the renormalization is stopped because of the term

6
See supplementarymaterial for technical details.
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sq2 in the denominator of G .q
0 To determine the q-

dependence of the renormalization of ξ, one should
take into account that the bending rigidity is also
renormalized for sufficiently small wave vectors

*

q q according to the RG equation [24, 26, 32]

( ) ( )
*

   hL =  = hq qd d . 6q

Here ( )
*

L = q qln , η is the anomalous dimension of

the bending rigidity, q* is the inverse Ginzburg length,

˜ ( )
*

mq T 7

and ˜ ( ) [ ( )]m m m l p m l= + +3 8 2 , see [44]. Below,
we assume that 

* sq q . In this case, a competition
between the two terms in the denominator of Gq

0

leads to appearance of a new spatial scale ˜sq deter-
mined by the condition  s=qq

2 , yielding ˜ =sq
( ) ( )

*s s
h h-q q q .2 Next, we calculate á¶ ¶ ña ah h with

the use of equation (6) and substitute it in equation (5)
(see footnote 6 for details). This yields an equation that
determines the dependence of x x= ¥L on s
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where quv is the ultraviolet cutoff ( 
*

q quv ). In the
absence of stress (s = 0), equation (8) simplifies. For
d 1,c when h = d2 ,c one gets [22, 44]

∣ ( ) x xº = - = -s= T T1 1 , 92
0 0

2
cr cr

where  p= d T 8ccr
2 and ph=T d4 ccr is the

temperature of crumpling transition (CT) for a given
value of bare bending rigidity . For <T Tcr, the
stretching factor is finite, x > 00 , and themembrane is
in the flat phase. For >T Tcr, the membrane under-
goes the CT, so that x  0 for < ¥L . Interestingly,
equation (9) predicts a negative expansion coefficient
of themembrane, x <Td d 00 .

For s ¹ 0, we assume for simplicity
m l= ~ ~d k1, ,c 0 (this is the case for graphene)

and rewrite equation (8) as follows (see derivation in
supplementarymaterial)
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where

( ) ( )*a h h s= - = Ck T T2 , 110 cr

and ~C 1 is a numerical coefficient. Equation (10)
represents a general form of HL for clean membrane.
The lhs of this equation contains two terms: a regular
term, proportional to σ, and an irregular one that
shows a fractional scaling with σ. Analytical approx-
imations [32], as well as numerical simulations
[30, 35] for the physical case D=2, d=3, show that
h 0.7, yielding a <0.54 1. Hence, the irregular

term dominates at small σ, and ξ shows an anomalous
behavior, while the linear HL, s x = kd d 0, is realized
for sufficiently large tensions,  *s s . For sufficiently
low temperatures, T Tcr, the stretching corresp-
onding to *s is small, 

*
x x- ~ T T 10 cr . For

*s s> , the term ( )*s s a becomes subleading. (In
this case ˜sq turns out to be larger than q*, which leads

to additional suppression of this term,
( ) ( )* *a s s s sa- ln1 (see footnote 6)). One may

introduce two exponents, governing the stretching in
the anomalous regime. Far from the transition point
( <T Tcr), one can expand ( )x x x x x- » -2 ,2

0
2

0 0
thusfinding

( )x x s- µ a, far from CT point. 120

Exactly at the transition point =T Tcr, x = 00 and

( )x sµ a , at the CT point. 132

The above results can be easily generalized to an
arbitrary dimensionality of the membrane, >D 2, by
replacing d dq qD2 in equation (8). This leads to
the replacement ( ) ( )a h h - + -D 2 2 of the
critical index in equations (10), (12) and (13) . The lat-
ter equation for α was obtained previously in [23, 25]
for h = 0, which corresponds to the7 case = ¥dc ,
and predicted in [26] from scaling considerations. As
seen from equation (10), the tension leads to an
increase of Tcr and, respectively, to a decrease of
cr. Indeed, setting x = 0 in equation (10) and assum-
ing that  *s s , we find the tension-induced
change of the critical temperature, d =T Tcr cr

( ) d s- ~ ak .cr cr 0

Disordered case. The derivation of perturbative RG
equations for disordered graphene is performed by
using replica trick within RPA scheme, in analogy with
the case s = 0 studied in [44]. Technical details of cal-
culations are presented in supplementary material.
First, we find á¶ ¶ ña ah h in the harmonic approx-
imation:
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Here the overbar denotes the disorder averaging and
=f b T is a dimensionless parameter characteris-

ing the ratio of disorder to thermal fluctuations. For
fixed ù and f , the integral in equation (14) logarith-
mically diverges for  sq2 and saturates for

 sq .2 In view of equation (3), we conclude that ξ is
renormalized:

( ) ˜ ( )


x
pL

» - + s
d T

f q q
d

d 4
1 , for 15c

2

and x L =d d 02 for ˜ sq q . The Ginzburg scale

q* is also affected by disorder [44]:
*
~q

˜ ( ) m +T f1 2 . For strong disorder or low tem-
peratures, f 1,wefind that

˜ ( )
*

m~q b 16

is independent of temperature, while for weak dis-
order ( f 1), we recover equation (7),

*
µq T1 2.

Below we show that ˜sq is also modified by sufficiently
strong disorder.

7
In these papers, HL was written in terms of tension

σ′=L–2∂F/∂ξ=2ξσ.
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In the harmonic approximation, ù and f are con-
stants. However, they become scale-dependent due to
the coupling between in-plane and out-of-plane fluc-
tuations: ù→ùq and f f .q For ˜ sq q , corresp-
onding RG equations were derived in [44] (see also
equation (S38) of supplementary material). For strong
disorder, f 1, the RG equations look:
 hL =d d 4 and hL = -fd d 3 4. The first
equation yields ( )

*
 = hq qq

4. Equating  qq
2 to σ,

wefind:

˜ ( ) ( )( )
*

=s s s
h h-q q q q , 178

where q* is given by equation (16). Since  changes
faster than f , one can set =f const in equation (15).
Using equation (5), we find that the equation that
determines the dependence of ξ on σ for a strongly
disordered membrane is given by equation (10) with
x = - B10

2

( ) ( ) *a h h s= - = ¢C k B8 0.1, and , 180

where p=B bd 2c
2 and ¢ ~C 1 is a numerical coeffi-

cient. Note that the temperature drops out from the
Hooke’s law for disorderedmembrane. For s = 0, the
CT (x = 0) corresponds to = =B B 1cr , in agree-
ment with previous study (see figure 5 of [44]). For
B Bcr the stretching corresponding to *s reads

*
x x a- ~ B .0 The tension enhances the critical
value of disorder: ( )d a sº - ~ a-B B k1 .cr cr

1
0 The

anomalous stress-strain relations have the form (12)
and (13) for <B Bcr and =B B ,cr respectively, with
appropriate replacement of α: the ‘clean’ value (11) is
replaced by the considerably smaller ‘dirty’ value (18).
Hence, stretching of a strongly disordered membrane
is a nonlinear function of a weak tension, just as in the
clean case. However, the corresponding power-law
exponents differ from that of a clean system. As in the
clean case, the conventional HL is restored
for  *s s .

The RG flow for ξ stops at ˜~ sq q . Thus, if x > 0
at this scale, the system is in the flat phase. Conversely,
if ξ becomes zero before ˜sq is reached, the membrane
crumples. The phase diagram in the parameter plane
( ) B, , as obtained by numerical solution of RG

equations, is shown in figure 1. The tension shifts the
line separating the flat and crumpled phases; this shift
is characterized by d cr and dBcr. Interestingly, the RG
flows for  and f do not stop at the point ˜~ sq q (see
footnote 6). However, for smaller q, such that

 sqq
2 , the scaling ofù is irrelevant for the CT and

themembrane remains flat.
Both in the clean and disordered case, it is con-

venient to introduce the effective stiffness

( )
( )

( ) *

*
s x

s s
s s

= ¶ ¶
+

a

a

-

-
k k

1
. 19eff 0

1

1

It is strongly reduced for a weak strain (  *s s ),
vanishing at the point of the buckling trans-
ition (s = 0).

Let us now discuss characteristic values of para-
meters for the case of graphene. In [44] we estimated
the amplitude of the static disorder as b=0.03 based
on experimental measurements of parameters of rip-
ples [50]. Taking the bare value of the bending rigidity
for graphene,  1 eV, we find f 1 at room temp-
erature. This implies that at T 300 K the system is in
the crossover regime between the clean and disordered
limits. In this regime, the exponent α takes a non-uni-
versal value between the clean ( a 0.5) and dis-
ordered ( a 0.1) values. For low low temperatures,
T 300 K, we predict then the disordered value
a 0.1, while for elevated temperatures the clean

value a 0.5 should be reached. (In fact, α flows as a
function of σ, tending to the clean value 0.5 for
smallest strains. This flow is, however, logarithmically
slow and may be difficult to observe experimentally.)
Clearly, the crossover temperature may vary depend-
ing on sample preparation (degree of disorder). For
clean samples, we estimate the crossover tension and
stretching at T 300 K from equation (11), yielding
*s 1 N/m and 

*
x x- 0.0030 (for h = 0.7 and

C=1). For disorder-dominated samples with the
above disorder strength b=0.03, we get B 0.005,
which yields, according to (18), an estimate
*s 2 Nm–1 and 

*
x x- 0.050 (for ¢ =C 1).

Figure 1.Phase diagramof graphene in the plane of parametersù (bending rigitidy) andB (disorder) at non-zero tensionσ. TheCT
separating crumpled and flat phases is shown by full red line; dashed line represents theCT for s = 0 [44].
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Our results compare well with a recent detailed
experimental study of graphene elasticity [15]. It was
found there that the room-temperature in-plane stiff-
ness of graphene is reduced compared to its value k0
for ‘ideal’ graphene (no disorder, =T 0) by a large
factor (up to ∼40) at low stretching. When temper-
ature was lowered down to 10 K, the stiffness showed a
sizeable increase, still remaining much smaller than
400 Nm–1. These data are in agreement with our con-
clusion that ripples and FP strongly weaken the in-
plane stiffness, yielding comparable contributions at
room temperature. In figure 2(a)we compare our the-
ory with the strain-stress dependence presented in
figure 2(c) of [15]. We use equation (10) describing
both clean and disorder case with the appropriate
choice of α and *s , considering α and *s as fitting
parameters. The solid lines in In figure 2(a) show
dependence of σ on ( ) ( )dx x s x s= - 0 , where s0 is
built-in stress extracted from experimental data [15].
The best fit is achieved for a » 0.1 and

*s » 1.68 N m–1. The obtained value ofα implies that
the sample is in the disorder-dominated regime, with
the degree of disorder B 0.004 (we set the numer-
ical coefficient ¢ =C 1 here). This estimate is in agree-
ment with the value B=0.005 [44] obtained from the
transmission-electron-microscopy data of [49, 50].
For a more detailed comparison with experiment,
measurements of strain-stress curves in a wide range
of temperatures would be of great interest.

Our results also compare very well with numerical
simulations of [46] which were performed for clean
graphene. In particular, the scaling of keff for f 1 is
in an excellent agreement with the large-sample data
(number of atoms 37888). For comparison, we used
the empirical formula (11) of [46] which perfectly fits
numerical data obtained there (see footnote 6 for
details). As seen from figure 2(b), the numerical data
are very well described by our equation (19) with
a 0.62 ( h 0.76), as expected in the clean limit.

The comparison to the results of numerical simula-
tions allows us to determine the numerical coefficient
C in equation (11), which turns out to be »C 0.093.
The corresponding crossover stress and strain values
read *s 0.1 Nm–1 and 

*
x x- 0.00060 ,

respectively.

To conclude, the theory of anomalous Hooke’s
law has been developed, for both clean and disordered
graphene. In both cases, scaling of the deformation
with the external force obeys a fractal power law in the
limit of weak forces. This behavior is dominated by
thermal fluctuations for clean graphene, while for
strongly disordered graphene it is governed by static
ripples. Remarkably, the same coupling between long-
itudinal and transversemodes that enhances the bend-
ing rigiditiy, thus rescuing the flat phase of the
membrane, leads simultaneously to a dramatic soft-
ening of the in-plane elasticity.
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