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Abstract

In the present contribution, perovskite absorbers have been combined with few layer thick MoS,
semiconductor to put together a solar cell allowing broad spectrum harvesting of solar radiations.
Such modification allows to achieve solar light harvesting at the band edges, addressing a drawback of
CH;NH;Pbl; absorbers. We recorded an improved efficiency from 3.7% to 4.3% on the back of this
methodology. We have also worked out a novel methodology to synthesize TiO,/MoS, nanocompo-
site by in situ dispersion of liquid exfoliated MoS, sheets in the sol gel reaction.

Introduction

Since the nascent advent of perovskite solar cells, they have achieved impressive milestones [1, 2].
Manufacturing protocols have evolved to improve efficiencies [3, 4]. Research has been focused at improving the
performance through structural ordering [5], composition modification [6-8] and innovations enabling flexible
cells with transparency and color tailoring [9]. Environmental concerns for lead have been addressed with
alternate absorbers [10, 11].

An aspect to improve the performance of these solar cells can be to increase light absorption without
increasing the film thickness or complicating the device architecture [11, 12]. Though strong absorption of
1.5 x 10* cm™ " at 550 nm [13], drop down in absorption around the band edges affords a possibility of
increasing performance by absorption enhancement at these edges. Metallic nanoparticles in different
configurations have been reported for absorption enhancement near long wavelength edge [14—16] and have
also been credited with lowering the exciton binding energy and improving charge transfer at the electron
selective interface [17]. Absorption enhancement over the short wavelength edge remains open for investigation.

Broad spectrum absorption demands continuously tuneable band gap. Since band gap is determined by the
chemical composition and the organization of crystal lattice, efforts have been directed at achieving continually
tuneable band gap by semiconductor alloying and generating superlattices. Though introduction of Brillouin
zones in thin semiconducting layers generated by atomic scale deposition of thin layers allows realization of
specific band gap for a particular application, they cannot be dynamically varied during operating conditions.
This method is not only challenging to design but also introduces unwanted defects due to variation in mixing
ratios and lattice mismatch [18].

Layered 2D semiconductor transition metal dichalcogenides (TMD) have been explored extensively and
have the potential to replicate the wonder material properties of graphene. Interplaner weak van der Waals
forces ensure efficient exfoliation using micromechanical cleavage and liquid phase exfoliation [19, 20]. Strong
planer bonding offers unique properties allowing the optical and electrical properties of MoS, to vary between
bulk and single/few layers owing to quantum mechanical confinement. Stability of MoS, under photoexcitation
is derived from the 4d orbital determining Mo conduction and valance band positions in bulk [21]. During
exfoliation to nanosize, edge located Mo atoms are freed from the influence of MoS, inert basal plane, resulting

©2016 IOP Publishing Ltd
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in continually shifting optical band gap with the sheet thickness allowing for wide spectrum harnessing of solar
spectrum [20].

In bulk form it is an indirect band gap semiconductor and in single layer it is a direct band gap
semiconductor allowing virtually continuous tuning of the band gap between 1.2 eV of bulk to 1.85 eV of single
layer [22—24]. Investigation of quasi particle band structure of MoS, through STM concluded a band gap of
2.34 eV, 0.44 eV higher than the optical band gap [25]. Consistent conclusions have also been drawn from the
determination of band gap under the effect of dielectric environment resulting in a 0.3 eV increase over optical
band gap [26, 27]. These observations validate the experimental evidence for the photocurrent reported for
MoS, between 350 to 800 nm. Mobility values vary between 517 cm® V' s~ and 200 cm® V' s~ for bulk [28]
and single layer [29]. Strong quenching allows for one order of magnitude higher absorption for MoS, than Si
and GaAs. This combination of optical and electronic properties offers a possibility of incorporation of layered
MoS; in solar cell applications allowing for enhanced optical absorption and improved charge transport at the
interfaces. Use of metal sulfides as nanocomposite with TiO, in perovskite solar cell systems is reported as a
blocking layer of Sb,S; at the interface between TiO, and CH;NH;Pbl; enhancing the stability of the system by
addressing the interface degradation mechanisms [30].

We report here a perovskite absorber based solar cell employing hole transport layer free design. Synthesis
was performed under ambient air conditions of high humidity by modifying the synthesis protocol. TiO,/MoS,
nanocomposite was developed using a novel sol gel synthesis method allowing in situ incorporation of MoS,
sheets in the TiO, particles matrix. Nanocomposite allowed higher efficiency on the back of greater light
harvesting by few layer thick MoS, and higher mobilities and reduced interfacial recombination because of the
nanocomposite.

Materials and methods

Materials

All the chemicals except CH;NHj3I were purchased from Sigma Aldrich and were used without further
purification. CH3NH;I, (MAI) was sourced from Dysol (MS101000-50). Indium doped tin oxide (ITO) was used
as front contact. At 10 mm x 10 mm it had a resistivity of 15 Q cm ™2 ITO coated slides were detergent cleaned,
washed with flowing ultra pure water and ultrasonicated in ethanol for 20 min. They were subsequently dipped
for one minute in piranha solution, rinsed in flowing ultra pure water and dried by blowing hot air.

Experimental details
Titania nanoparticles were synthesized by sol gel route. Titanium isopropoxide (<97%), 2- methoxyethanol
(99.9+ %) and ethanolamine(99+ %) were mixed in 1: 4: 0.5 molar ratio. The mixture was refluxed in a three
necked flask in an inert environment, stirred at room temperature for 1 hr, 80 °C for 1 h and finally at 120 °C for
2 h under constant stirring. Light yellow color of the sol indicated the dissolution of isopropoxide precursor in
methoxyethanol solvent aided by ethanolamine as linker. Bulk MoS, was exfoliated using liquid phase
exfoliation technique employing N-Methyl-2-pyrrolidone (NMP) as solvent. Probe sonicator was used for
exfoliation spanning over 66 h while a chiller was used to maintain temperature of the bath at 2 °C. Suspension
thus achieved was centrifuged at 4000 rpm. Supernatant was removed and filtered with 0.22 micron nylon filter.
Two methods were used to prepare composite. In the first method, MoS, containing filter was sonicated in 2-
methoxyethanol and this dispersion was added in TiO, sol. In the second method MoS, containing filter was
sonicated in 2- methoxyethanol before incorporation in sol gel reaction at varying ratios to obtain desired mass
fraction of MoS, in final TiO, sol.

Devices were synthesized by spin coating titania composite over pre cleaned ITO coated glass slides at
2500 rpm for 20 s. TiO, coated slides were dried in oven at 500 °C for 2 h with a heating rate of 10 °C per min and
were allowed to cool in furnace. CH;NH;PbI; was deposited by a modified two step solution processing
method. Lead iodide was dissolved in DMF to obtain a 1 M solution. MAI was dissolved in iso-propanol at
7 mg ml ™. Lead iodide solution was spin coated on TiO, coated slides at 3000 rpm for 20 s. Lead iodide coated
slides were annealed for 3 min at 40 °C and then at 100 °C for 5 min. They were removed from the oven and then
mounted on the spin coater and MAI was coated at 3000 rpm for 20 s. Slides were again annealed for 3 min at
40 °Cand 5 min at 100 °C in a laboratory oven. Au was thermally evaporated by a mask to define an active area
for the device of 0.11 cm®.

Characterization

Microstructures and film morphologies were investigated using scanning electron microscope (JEOL
JSM6490A) and atomic force microscope (JEOL SPM 5200). X-Ray diffraction (XRD) studies were done on
STOE Stadi MP in #-26 mode using Cu Ko source under tube acceleration voltage of 40 KV and tube current of
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Figure 1. Thickness profile of MoS, dispersion on Si Wafer.

20 mA. Measurements were recorded with a step size of 0.04° and dwell time of 3 s for each step. ECOPIA HMS-
5000 system was used for Hall Effect measurements employing the van der Pauw principle. Contacts were made
with silver paste on the samples and gold coated spring loaded contacts were used for measurements. Nanovea
PS 50 optical profilometer was used to determine the film thicknesses employing Mountains 2D software suite.
Impedance spectroscopy was performed using Biologic EC Lab work station. EC-Lab V10.40 software was used
for simulation of impedance data. J-V parameters were obtained on Keithley 2400 source meter. Newport 67005
solar simulator with AM 1.5 G filter was used at an irradiance intensity of 100 mW cm ™2, Voltage step was

10 mV with a step time of 40 ms.

Results and discussion

Pristine MoS, dispersions on silicon wafers were investigated under AFM to reveal extent and quality of
exfoliation (figure 1). The images revealed that single layers of MoS, were obtained in the dispersion with
thickness distribution 0of 0.939 nm. Addition of exfoliated MoS, in as prepared TiO, sol resulted in poor quality
dispersions and formed agglomerates instead of evenly dispersed sheets, critical to obtain broad spectrum
harvesting of solar spectrum. Another shortcoming was the difficulty in sustaining the sol once we adopted this
technique for the synthesis of nanocomposite. On addition of MoS,, it was sonicated for even dispersion which
resulted in gel formation in most instances. We devised a novel method for better quality dispersion of MoS,
sheets by dispersing them in the solvent in the sol gel reaction. This allowed uniform distribution of MoS, sheets
with complete imbedding in the particle matrix. We investigated different wt% and best quality dispersion were
achieved for 20 wt% of Mo$; loading in TiO, sol. Higher concentrations resulted in redundant MoS, particles
on the surface, detrimental to the performance of the final devices. More importantly, higher concentrations
resulted in agglomerations causing conduction band of the Mo$; to decrease below the conduction band of the
TiO, and thus hampering the very basis of the electronic structure of the devices.

MoS, dispersion in TiO, sol was investigated for dispersion quality and restacking effects. Investigation of
Ti0,/MoS, composite under AFM (figure 2(a)) and SEM (figures 2(b), (c)) confirmed that MoS, was completely
imbedded in the particle matrix allowing for coverage of sheets with TiO, particles. This allowed uniform film
structure with mean square roughness of the order of 6.41 nm critical for well functioning solar cells since they
allow homogeneous coverage of the perovskite sensitizer and avoid short circuiting of the devices. Both SEM and
AFM profiles testify to the effectiveness of the in situ method of MoS, dispersion in the sol gel synthesis of TiO,
nanoparticles.

Quantitative validation of MoS, dispersion in TiO, was obtained through Raman spectroscopy (figure 3(a))
where peak at 146 cm ™' confirmed the anatase titania. Raman signature peaks for Mo$S, are reported at
383 cm™ ! for E1 2 g mode associated with antiphase parallel oscillations of sulfur and molybdenum atoms in
crystal plane and at 409 cm ™! for Alg mode for sulfur atoms in out of plane antiphase oscillations. We observed
peaksat 383 cm™ ' and 406 cm ™. Since monolayer of MoS, gives a signature peak at 405 cm ™', this suggests that
our dispersions consist of monolayers and few layer stacks. The wave number shift is attributed to quantum
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Figure 2. (a), (b) AFM micrograph of TiO,/MoS, dispersions showing sheets imbedded in particle matrix, (c), (d) SEM micrographs
of TiO,/MoS, nanocomposite.
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Figure 3. (a) Raman spectrum of TiO,/MoS, composite, (b) XRD diffractogram of composite.

confinement effect with decreasing layer thickness and also confirms the shifting optical band gap associated
with few and monolayer MoS, dispersions [31]. XRD studies at figure 3(b) present a characteristic peak at 13.58
attributed to MoS,, contributed by (002) plane of hexagonal lattice [32]. Small particle distribution is
demonstrated by the peak broadening in the diffractogram. Peaks at 25.58, 37.38, 48.25, 54.2, 55.48, 62.98 are
associated with (101), (004), (200), (105), (211) and (204) planes of anatase TiO, (JCPDS 21-1272) respectively.
Figure 4 represent the UV—vis spectrum recorded for pure TiO, and TiO,/MoS, nanocomposite. Spectrum
recorded for pure TiO, indicates an efficient absorption at wavelengths lower than 400 nm associated with UV
activation at the recorded band gap of 3.2 eV of anatase TiO,. By linear extrapolation from the inflection point
on the curves to the base line, absorption onsets were determined. Incorporation of MoS; results in considerable
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Figure 4. UV-vis spectrum of pure TiO, and TiO,/MoS, composite, increased absorbance and a red shift is observed in the spectrum.

absorption over the whole visible light spectrum with red shift, visible in the composite spectrum over pure
Ti0,. This red shift can be due to the chemical bonding between the nanocomposite constituents.

CH;NH;PbI; films were deposited on the optimized TiO,/MoS, nanocomposite. CH;NH;PbI; was made
with a modified approach to the reported procedure for high relative humidity environment [33]. Briefly, we
introduced an intermediate step to wet the lead iodide coated films with iso-propanol and simultaneously with
MAI solution in iso-propanol while the samples were spinning on the spin coater. They were then soaked in MAI
solution in iso-propanol and allowed a soaking time of 20 s before further spin coating and annealing. Details of
the synthesis procedure are outlined in the methods section.

Large area SEM and AFM images (figures 5(a), (b)) reveal uniform coverage for CH;NH;PbI; particles, an
indication of the efficiency of the synthesis protocol under high humidity. Other researchers have also
concluded that appropriate humidity levels during film formation are prerequisite for obtaining pin hole free
films with improved optoelectronic and mass transport properties. It has been reported that films grown under
nitrogen filled glove box conditions introduce pin holes and grain boundaries [34], a source of energetic disorder
impeding the photovoltaic performance. Films annealed in air were found to increase the grain size resulting in
reduced grain boundaries and improved mass transport. Therefore, a proper humidity level during film
formation introduces moisture assisted grain boundary creep, resulting in larger grains, avoiding pin holes and
improving carrier lifetimes [34, 35]. Additional charge carriers may be generated by autoionization of adsorbed
water molecules at the surface into hydroxyl and proton ions creating surface OH sites. Protons may migrate
between these sites and act as additional carriers.

The diffraction pattern presented in figure 5(c) is consistent with the tetragonal phase of the CH;NH;Pbl;
with sharp peaks at 14.0, 24.3, 28.4,31.7, 40.5, 43.0, and 50.3°, corresponding planes have been indexed in
figure 4 [3, 36—38]. Some residual lead iodide is also evident and is considered to be beneficial for the
photovoltaic performance by improving carrier lifetime. This residual lead iodide at the grain boundaries is also
attributed to reduced recombination at the absorber electron selective contact interface.

Figure 6(b) shows a schematic of the device operation. In order to obtain necessary photoexcitation and
afford efficient electron uptake by TiO,, it is imperative that the conduction band of MoS, be kept higher than
the conduction band of TiO, which can be ensured by keeping MoS, sheets to few layer thickness in the
composite. Theoretical calculations have suggested that band gap of MoS, is dictated by the interaction between
S-Mo-S dictating a variation in CB with the variation of thickness while VB remains virtually fixed. Thus, if
efficient exfoliation is not achieved or the layers restack during dispersion in TiO, matrix, this could result in CB
edge of MoS,; lying lower than the CB of TiO,, disrupting the energy scheme of the complete device.

Photoexcitation occurs simultaneously in MoS, and CH3;NH;Pbl; with photoexcited electrone injected into
the conduction band of TiO,. We have estimated that small weight fraction of MoS, does not have a detrimental
effect on the photons reaching the CH;NH;PbIj; layer, allowing efficient light harvesting by both the sensitizers
in respective active regions of the solar spectrum. Photons reemitted by MoS, can be another factor in improving
the photovoltaic performance for the devices using TiO,/MoS, blend as electron transport layer. MoS, thus
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Figure 5. (a), (b) large are SEM and AFM micrographs of CH;NH;Pbl; Uniform film formation and complete conversion is reflective
of the effectiveness of the synthesis protocol. (c) XRD diffractogram of CH;NH;Pbl;.
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Figure 6. (a), JV curves and tabulated performance parameters, (b), schematic device operation, inset is the actual device with three
cells and an active area of 0.11 cm? for each cell.

augmenting the performance of the device allowing for improved efficiency of 4.43% from 3.74% for the TiO,
only device (figure 6(a)).

Absorption spectra of completed devices are compared in figure 7. MoS, composite based devices present a
broader absorption spectrum spanning the visible range over 350 nm to 800 nm. This increase is associated with
MoS, nanosheets providing additional quenching. These observations are in good agreement to the reported
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Figure 7. UV-Vis absorption spectra of completed devices based on pure TiO, and TiO,/MoS; electron selective contacts.
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Figure 8. Rs, Rsc and Rrec patterns and equivalent circuit diagram.

photoabsorption and photocurrent response of MoS, in the visible spectrum driven by the shifting band gap
associated with single and few layer thick sheets. This corresponds to the theoretical calculations for monolayer
MoS, absorption at photons energy of 1.9 eV. Strong absorption is observed for wavelengths of the order of
500-530 nm. Some photons between 1.9 to 2.4 e V can be reemitted to be subsequently absorbed by
CH3NH;PbI; further enhancing the absorption.

MosS, is credited with improved mobility values to the tune of 200 cm®* V™' s ' and 517 cm® V™' s~ for
mono and multilayer systems. We estimated that incorporation of MoS, in the TiO, matrix will allow for
improved charge transport at the interface between CH3;NH;PbI; by reducing the interfacial resistance. To
validate this idea and to obtain quantitative measure of the interfacial charge transport processes, we performed
impedance spectroscopy of the completed devices. Impedance spectroscopy is a versatile technique to decipher
the interfacial electronic processes and has been extensively employed in the study of solar cells [39-43].
Impedance response was obtained between 100 mV to 800 mV for frequency range of 1 MHz to 500 mHz ata
perturbation of 20 mV. Obtained data was analyzed through Biologic analysis software using a modified
transmission line equivalent circuit [44] depicted in figure 8. It involved two RC elements and a series resistance
component. Graphical trend of circuit element values obtained through simulation of Impedance response is
presented in figure 8. Nyquist plots consist of typical arc associated with the impedance response for such devices
and are presented in figure 9.

Rs is the resistive contribution from circuit wires and ITO, one RC circuit is used to model the electron
selective contacts and an additional RC element to model the shunt resistance and capacitance associated with
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Figure 9. Nyquist plots for TiO, and TiO,/MoS, electron selective contact based devices at 0.2 and 0.8 V.

the active layer. Constant phase elements are used instead of ideal capacitors to obtain a better fit. Two
characteristic arcs can be identified from the Nyquist plots, an intermediate frequency feature and an additional
low frequency feature. The intermediate frequency feature is ascribed to recombination in the active layer while
the source of additional low frequency feature is still debated. This is differently attributed i.e. some consider it
having no bearing on the physics of the device and therefore leaving it out of the curve fitting parameters [45]
while others have identified its origin as charge accumulation by ferroelectric domain walls with slow time
constants [46]. Distribution of trap states in CH;NH;Pbl; band gap itself has also been attributed to the
generation of two distinct impedance features [39]. A contrary hypothesis suggests the difference in electron
affinities of the contacting materials as a source for the generation of this characteristic response [47]. This low
frequency feature is a characteristic of the DSSCs and has been associated with ionic mobility in liquid
electrolyte. Ionic mobility in CH;NH;Pbl; devices has also been established [48, 49] and can be a possible source
for this low frequency feature in these devices.

Values for Rs, Rsc and Rrec are presented in figure 8. Total series resistance is a combination of Rs and Rsc
[47] and with the addition of MoS, in titania, the total series resistance decreases. This decrease in series
resistance is the cause of increased FF for devices with titania MoS, composites. Higher charge carrier mobilities
for the composite (2.3 x 10 em? Vs Y over pure TiO, (9.49 x 10% cm? V™' s7Y) is considered to be the
reason for decreased series resistance.

The intermediate frequency feature in the Nyquist plot is associated with Rrec [47]. Recombination rate is
inversely proportional to the recombination resistance. The higher the recombination resistance, the lower the
recombination rate and vice versa. Recombination in perovskite is primarily an interfacial phenomenon owing
to long diffusion lengths of excitons in CH;NH;Pbl;. MoS, in the nanocomposite offers a superior charge
transport pathway in the form of a two dimensional framework lowering the recombination rate. Passivation of
defects in the TiO, matrix can be another source of decrease in recombination rate. Recombination resistance
decreases with increase in applied bias voltage. This decrease is attributed to the higher concentration of charge
carriers at higher voltages resulting in greater recombination. Recombination rates are associated with the Voc
and higher recombination resistance values means higher Voc. Lower slopes of Rrec accounts for the higher FF
as the recombination rate decreases with the applied bias. The value of Rrec is higher for titania MoS, composite.
This increase of Rrec with the concurrent decrease of the slope with increasing voltage presents quantifiable
evidence of increased Voc for devices employing titania MoS; as electron selective contacts over pure titania.

Conclusions

We have demonstrated enhance optical absorption and higher efficiency for CH;NH;Pbl; devices using TiO,/
MoS, nanocomposite as electron selective contact. Higher absorption results in higher Jsc, allowing for better
solar spectrum harvesting toward the lower wavelength region. Higher mobilities associated with MoS, results
in decrease in the series resistance component, verified through impedance spectroscopy which provides
additional verification for increase in the Voc for the improved devices. All the synthesis was performed under
ambient air conditions of high humidity employing HTL free device architecture. Though this method did not
present record efficiencies, it has the potential of lowering the processing cost of this technology, paving the way
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for its rapid commercialization. Employing MoS, with exceptionally large absorption can give us a very large
weight specific energy advantage. CH;NH;Pbl; with a band gap of the order of 1.5 eV, using few and monolayer
MoS, with band gap varying between 1.3 to 1.9 eV could be an effective way to enhance the optical absorbance.
Furthermore, for such systems, coupled with extremely high optical absorbance coefficient of TMDs, very small
quantities of materials can be used to augment the performance without employing complicated device
architectures.
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