The possible domain structures which can arise in the universe in a spontaneously broken gauge theory are studied. It is shown that the formation of domain wall, strings or monopoles depends on the homotopy groups of the manifold of degenerate vacua. The subsequent evolution of these structures is investigated. It is argued that while theories generating domain walls can probably be eliminated (because of their unacceptable gravitational effects), a cosmic network of strings may well have been formed and may have had important cosmological effects.
A major journal reporting work on the fundamental mathematical and computational methods underpinning physics. Each issue of the journal is split into six sections: statistical physics; chaotic and complex systems; mathematical physics; quantum mechanics and quantum information theory; classical and quantum field theory; and fluid and plasma theory.
For articles from 2007 please visit Journal of Physics A: Mathematical and Theoretical
T W B Kibble 1976 J. Phys. A: Math. Gen. 9 1387
E Gardner 1988 J. Phys. A: Math. Gen. 21 257
The typical fraction of the space of interactions between each pair of N Ising spins which solve the problem of storing a given set of p random patterns as N-bit spin configurations is considered. The volume is calculated explicitly as a function of the storage ratio, alpha =p/N, of the value kappa (>0) of the product of the spin and the magnetic field at each site and of the magnetisation, m. Here m may vary between 0 (no correlation) and 1 (completely correlated). The capacity increases with the correlation between patterns from alpha =2 for correlated patterns with kappa =0 and tends to infinity as m tends to 1. The calculations use a saddle-point method and the order parameters at the saddle point are assumed to be replica symmetric. This solution is shown to be locally stable. A local iterative learning algorithm for updating the interactions is given which will converge to a solution of given kappa provided such solutions exist.
David S Dean 1996 J. Phys. A: Math. Gen. 29 L613
We present a simple derivation of the stochastic equation obeyed by the density function for a system of Langevin processes interacting via a pairwise potential. The resulting equation is considerably different from the phenomenological equations usually used to describe the dynamics of non-conserved (model A) and conserved (model B) particle systems. The major feature is that the spatial white noise for this system appears not additively but multiplicatively. This simply expresses the fact that the density cannot fluctuate in regions devoid of particles. The steady state for the density function may, however, still be recovered formally as a functional integral over the coursed grained free energy of the system as in models A and B.
Ingo Peschel 2003 J. Phys. A: Math. Gen. 36 L205
It is shown that for solvable fermionic and bosonic lattice systems, the reduced density matrices can be determined from the properties of the correlation functions. This provides the simplest way to these quantities which are used in the density-matrix renormalization group method.
R Benzi et al 1981 J. Phys. A: Math. Gen. 14 L453
It is shown that a dynamical system subject to both periodic forcing and random perturbation may show a resonance (peak in the power spectrum) which is absent when either the forcing or the perturbation is absent.
P D Drummond and D F Walls 1980 J. Phys. A: Math. Gen. 13 725
A quantum treatment of a coherently driven dispersive cavity is given based on a cubic nonlinearity in the polarisability of the internal medium. This system displays bistability and hysteresis in the semiclassical solutions. Quantum fluctuations are included via a Fokker-Planck equation in a generalised P representation. The transmitted light shows a transition from a single-peaked spectrum to a double-peaked spectrum above the threshold of the lower branch. Fluctuations in the field are reduced on the upper branch and both photon bunching and photon antibunching are predicted, for different operating points. An exact solution obtained for the steady-state generalised P function shows decidedly non-equilibrium behaviour, e.g. the lack of a Maxwell construction.
W D Heiss 2004 J. Phys. A: Math. Gen. 37 2455
Exceptional points associated with non-Hermitian operators, i.e. operators being non-Hermitian for real parameter values, are investigated. The specific characteristics of the eigenfunctions at the exceptional point are worked out. Within the domain of real parameters the exceptional points are the points where eigenvalues switch from real to complex values. These and other results are exemplified by a classical problem leading to exceptional points of a non-Hermitian matrix.
Mark Srednicki 1999 J. Phys. A: Math. Gen. 32 1163
We consider many-body quantum systems that exhibit quantum chaos, in the sense that the observables of interest act on energy eigenstates like banded random matrices. We study the time-dependent expectation values of these observables, assuming that the system is in a definite (but arbitrary) pure quantum state. We induce a probability distribution for the expectation values by treating the zero of time as a uniformly distributed random variable. We show explicitly that if an observable has a non-equilibrium expectation value at some particular moment, then it is overwhelmingly likely to move towards equilibrium, both forwards and backwards in time. For deviations from equilibrium that are not much larger than a typical quantum or thermal fluctuation, we find that the time dependence of the move towards equilibrium is given by the Kubo correlation function, in agreement with Onsager's postulate. These results are independent of the details of the system's quantum state.
Mark E Tuckerman et al 2006 J. Phys. A: Math. Gen. 39 5629
The constant-pressure, constant-temperature (NPT) molecular dynamics approach is re-examined from the viewpoint of deriving a new measure-preserving reversible geometric integrator for the equations of motion. The underlying concepts of non-Hamiltonian phase-space analysis, measure-preserving integrators and the symplectic property for Hamiltonian systems are briefly reviewed. In addition, current measure-preserving schemes for the constant-volume, constant-temperature ensemble are also reviewed. A new geometric integrator for the NPT method is presented, is shown to preserve the correct phase-space volume element and is demonstrated to perform well in realistic examples. Finally, a multiple time-step version of the integrator is presented for treating systems with motion on several time scales.
F Barahona 1982 J. Phys. A: Math. Gen. 15 3241
In a spin glass with Ising spins, the problems of computing the magnetic partition function and finding a ground state are studied. In a finite two-dimensional lattice these problems can be solved by algorithms that require a number of steps bounded by a polynomial function of the size of the lattice. In contrast to this fact, the same problems are shown to belong to the class of NP-hard problems, both in the two-dimensional case within a magnetic field, and in the three-dimensional case. NP-hardness of a problem suggests that it is very unlikely that a polynomial algorithm could exist to solve it.
J M Robbin 2007 J. Phys. A: Math. Gen. 39 8604
The hallmark of a good book of problems is that it allows you to become acquainted with an unfamiliar topic quickly and efficiently. The Quantum Mechanics Solver fits this description admirably. The book contains 27 problems based mainly on recent experimental developments, including neutrino oscillations, tests of Bell's inequality, Bose--Einstein condensates, and laser cooling and trapping of atoms, to name a few.
Unlike many collections, in which problems are designed around a particular mathematical method, here each problem is devoted to a small group of phenomena or experiments. Most problems contain experimental data from the literature, and readers are asked to estimate parameters from the data, or compare theory to experiment, or both. Standard techniques (e.g., degenerate perturbation theory, addition of angular momentum, asymptotics of special functions) are introduced only as they are needed. The style is closer to a non-specialist seminar rather than an undergraduate lecture. The physical models are kept simple; the emphasis is on cultivating conceptual and qualitative understanding (although in many of the problems, the simple models fit the data quite well). Some less familiar theoretical techniques are introduced, e.g. a variational method for lower (not upper) bounds on ground-state energies for many-body systems with two-body interactions, which is then used to derive a surprisingly accurate relation between baryon and meson masses.
The exposition is succinct but clear; the solutions can be read as worked examples if you don't want to do the problems yourself. Many problems have additional discussion on limitations and extensions of the theory, or further applications outside physics (e.g., the accuracy of GPS positioning in connection with atomic clocks; proton and ion tumor therapies in connection with the Bethe--Bloch formula for charged particles in solids).
The problems use mainly non-relativistic quantum mechanics and are organised into three sections: Elementary Particles, Nuclei and Atoms; Quantum Entanglement and Measurement; and Complex Systems. The coverage is not comprehensive; there is little on scattering theory, for example, and some areas of recent interest, such as topological aspects of quantum mechanics and semiclassics, are not included. The problems are based on examination questions given at the École Polytechnique in the last 15 years. The book is accessible to undergraduates, but working physicists should find it a delight.
R Klagesh 2007 J. Phys. A: Math. Gen. 39 8604
This book is a new volume of a series designed to introduce the curious reader to anything from ancient Egypt and Indian philosophy to conceptual art and cosmology. Very handy in pocket size, Chaos promises an introduction to fundamental concepts of nonlinear science by using mathematics that is `no more complicated than X=2.'
Anyone who ever tried to give a popular science account of research knows that this is a more challenging task than writing an ordinary research article. Lenny Smith brilliantly succeeds to explain in words, in pictures and by using intuitive models the essence of mathematical dynamical systems theory and time series analysis as it applies to the modern world. In a more technical part he introduces the basic terms of nonlinear theory by means of simple mappings. He masterly embeds this analysis into the social, historical and cultural context by using numerous examples, from poems and paintings over chess and rabbits to Olbers' paradox, card games and `phynance'.
Fundamental problems of the modelling of nonlinear systems like the weather, sun spots or golf balls falling through an array of nails are discussed from the point of view of mathematics, physics and statistics by touching upon philosophical issues. At variance with Laplace's demon, Smith's 21st century demon makes `real world' observations only with limited precision. This poses a severe problem to predictions derived from complex chaotic models, where small variations of initial conditions typically yield totally different outcomes. As Smith argues, this difficulty has direct implications on decision-making in everyday modern life. However, it also asks for an inherently probabilistic theory, which somewhat reminds us of what we are used to in the microworld.
There is little to criticise in this nice little book except that some figures are of poor quality thus not really reflecting the beauty of fractals and other wonderful objects in this field. I feel that occasionally the book is also getting a bit too intricate for the complete layman, and experts may not agree on all details of the more conceptual discussions.
Altogether I thoroughly enjoyed reading this book. It was a happy companion while travelling and a nice bedtime literature. It is furthermore an excellent reminder of the `big picture' underlying nonlinear science as it applies to the real world. I will gladly recommend this book as background literature for students in my introductory course on dynamical systems. However, the book will be of interest to anyone who is looking for a very short account on fundamental problems and principles in modern nonlinear science.
2006 J. Phys. A: Math. Gen. 39 15491
The PDF file provided contains web links to all articles in this volume.
Stefan Heusler 2006 J. Phys. A: Math. Gen. 39 15311
The main focus of the second, enlarged edition of the book Mathematica for Theoretical Physics is on computational examples using the computer program Mathematica in various areas in physics. It is a notebook rather than a textbook. Indeed, the bookis just a printout of the Mathematica notebooks included on the CD. The second edition is divided into two volumes, the first covering classical mechanics and nonlinear dynamics, the second dealing with examples in electrodynamics, quantum mechanics, general relativity and fractal geometry.
The second volume is not suited for newcomers because basic and simple physical ideas which lead to complex formulas are not explained in detail. Instead, the computer technology makes it possible to write down and manipulate formulas of practically any length.
For researchers with experience in computing, the book contains a lot of interesting and non-trivial examples. Most of the examples discussed are standard textbook problems, but the power of Mathematica opens the path to more sophisticated solutions. For example, the exact solution for the perihelion shift of Mercury within general relativity is worked out in detail using elliptic functions.
The virial equation of state for molecules' interaction with Lennard-Jones-like potentials is discussed, including both classical and quantum corrections to the second virial coefficient. Interestingly, closed solutions become available using sophisticated computing methods within Mathematica. In my opinion, the textbook should not show formulas in detail which cover three or more pages—these technical data should just be contained on the CD. Instead, the textbook should focus on more detailed explanation of the physical concepts behind the technicalities. The discussion of the virial equation would benefit much from replacing 15 pages of Mathematica output with 15 pages of further explanation and motivation. In this combination, the power of computing merged with physical intuition would be of benefit even for newcomers.
In summary, this book shows in a convincing manner how classical problems in physics can be attacked with modern computing technology. The second volume is interesting for experienced users of Mathematica. For students, the textbook can be very useful in combination with a seminar.
Petr P Kulish 2006 J. Phys. A: Math. Gen. 39 15311
We have spent more than twenty years applying supersymmetry (SUSY) to elementary particle physics and attempting to find an experimental manifestation of this symmetry. Terning's monograph demonstrates the strong influence of SUSY on theoretical elaborations in the field of elementary particles. It gives both an overview of modern supersymmetry in elementary particle physics and calculation techniques.
The author, trying to be closer to applications of SUSY in the real world of elementary particles, is also anticipating the importance of supersymmetry for rigorous study of nonperturbative phenomena in quantum field theory. In particular, he presents the `exact' SUSY β function using instanton methods, phenomena of anomalies and dualities.
Supersymmetry algebra is introduced by adding two anticommuting spinor generators to Poincaré algebra and by presenting massive and massless supermultiplets of its representations. The author prefers to use mostly the component description of field contents of the theories in question rather than the superfield formalism. Such a style makes the account closer to physical chartacteristics.
Relations required by SUSY among β functions of the gauge, Yukawa and quartic interactions are checked by direct calculations as well as to all orders in perturbation theory, thus demonstrating that SUSY survives quantization.
A discussion is included of the hierarchy problem of different scales of weak and strong interactions and its possible solution by the minimal supersymmetric standard model. Different SUSY breaking mechanisms are presented corresponding to a realistic phenomenology.
The monograph can also be considered as a guide to `duality' relations connecting different SUSY gauge theories, supergravities and superstrings. This is demonstrated referring to the particular properties and characteristics of these theories (field contents, scaling dimensions of appropriate operators etc). In particular, the last chapter deals with the AdS/CFT correspondence.
The author explains clearly most of the arguments in discussions and refers for further details to original papers (with corresponding arXiv numbers), selected lists of which appear at the end of each chapter (there are more than 300 references in the book).
Considered as a whole the book covers primers on quantum fields, Feynman diagrams, renormalization procedure and renormalization groups, as well as the representation theory of classical linear Lie algebras. Some necessary information on irreducible representations of su(N), so(N) and sp(2N) is given in an appendix.
There are in the text short historical and biographical notes concerning those scientists who made important contributions to the subject of the monograph: S Coleman, Yu Golfand, E Witten and others.
Most of the seventeen chapters contain a few exercises to check the reader's understanding of the corresponding material.
This monograph will be useful for graduate students and researchers in the field of elementary particles.
Zhong-Qi Ma 2006 J. Phys. A: Math. Gen. 39 R625
The Levinson theorem is a fundamental theorem in quantum scattering theory, which shows the relation between the number of bound states and the phase shift at zero momentum for the Schrödinger equation. The Levinson theorem was established and developed mainly with the Jost function, with the Green function and with the Sturm–Liouville theorem. In this review, we compare three methods of proof, study the conditions of the potential for the Levinson theorem and generalize it to the Dirac equation. The method with the Sturm–Liouville theorem is explained in some detail. References to development and application of the Levinson theorem are introduced.
Ravil Yamilov 2006 J. Phys. A: Math. Gen. 39 R541
In this paper we review the results obtained by the generalized symmetry method in the case of differential difference equations during the last 20 years. Together with general theory of the method, classification results are discussed for classes of equations which include the Volterra, Toda and relativistic Toda lattice equations.
Andrea De Martino and Matteo Marsili 2006 J. Phys. A: Math. Gen. 39 R465
We review the statistical mechanics approach to the study of the emerging collective behaviour of systems of heterogeneous interacting agents. The general framework is presented through examples in such contexts as ecosystem dynamics and traffic modelling. We then focus on the analysis of the optimal properties of large random resource-allocation problems and on Minority Games and related models of speculative trading in financial markets, discussing a number of extensions including multi-asset models, majority games and models with asymmetric information. Finally, we summarize the main conclusions and outline the major open problems and limitations of the approach.
Ilya A Gruzberg 2006 J. Phys. A: Math. Gen. 39 12601
Conformally invariant curves that appear at critical points in two-dimensional statistical mechanics systems and their fractal geometry have received a lot of attention in recent years. On the one hand, Schramm (2000 Israel J. Math.118 221 (Preprint math.PR/9904022)) has invented a new rigorous as well as practical calculational approach to critical curves, based on a beautiful unification of conformal maps and stochastic processes, and by now known as Schramm–Loewner evolution (SLE). On the other hand, Duplantier (2000 Phys. Rev. Lett.84 1363; Fractal Geometry and Applications: A Jubilee of Benot Mandelbrot: Part 2 (Proc. Symp. Pure Math. vol 72) (Providence, RI: American Mathematical Society) p 365 (Preprint math-ph/0303034)) has applied boundary quantum gravity methods to calculate exact multifractal exponents associated with critical curves. In the first part of this paper, I provide a pedagogical introduction to SLE. I present mathematical facts from the theory of conformal maps and stochastic processes related to SLE. Then I review basic properties of SLE and provide practical derivation of various interesting quantities related to critical curves, including fractal dimensions and crossing probabilities. The second part of the paper is devoted to a way of describing critical curves using boundary conformal field theory (CFT) in the so-called Coulomb gas formalism. This description provides an alternative (to quantum gravity) way of obtaining the multifractal spectrum of critical curves using only traditional methods of CFT based on free bosonic fields.

Joseph A Minahan 2006 J. Phys. A: Math. Gen. 39 12657
We give a brief introduction to the application of the Bethe ansatz to the study of planar super-Yang–Mills. The emphasis is on one-loop integrability in the SU(2) sector. We use the Bethe ansatz to find the anomalous dimensions for certain operators and compare these results with string theory predictions based on the AdS/CFT correspondence.