A dressed-atom approach to resonance fluorescence in intense laser fields is presented. Simple and general results are derived which include the now well known predictions concerning two-level atoms but are not restricted to such simple cases. The positions of the various components of the fluorescence and absorption spectra are given by the allowed Bohr frequencies of the total system: atom+laser mode (dressed atom). The master equation, describing spontaneous emission from the dressed atom is solved in the limit of high intensities. Simple expressions, taking into account the effect of cascades, are derived for the widths of the components.
C Cohen-Tannoudji and S Reynaud 1977 J. Phys. B: Atom. Mol. Phys. 10 345
M B Shah et al 1987 J. Phys. B: Atom. Mol. Phys. 20 3501
A pulsed crossed-beam technique incorporating time of flight spectroscopy has been successfully developed and applied to measurements of the electron impact ionisation cross sections of atomic hydrogen in the range 14.6-4000 eV. The method has been derived from a crossed-beam coincidence technique. By substituting a pulsed proton beam for the pulsed electron beam in the present work, measured electron impact ionisation cross sections have been normalised by reference to known equivelocity proton impact cross sections for both ionisation and charge transfer. The results resolve the discrepancy between earlier less accurate cross sections measured using the modulated cross-beam technique. They provide a reliable check on the range of validity of theoretical predictions over a wide energy range.
K L Bell et al 1968 J. Phys. B: Atom. Mol. Phys. 1 18
Values of the van der Waals interaction between the 2 1S and 2 3S metastable states of helium and the systems Ne, Ar, Kr, Xe, H2, N2, O2, CH4, Li, Na, K, Rb, Cs and O are computed. The values are used to determine Penning ionization probabilities from the experimental data with results differing significantly from an earlier analysis. Estimates are made of Penning ionization cross sections for He (2 3S) in the alkali metals, in atomic oxygen and in methane, for which no experimental data exist.
W P Healy and R G Woolley 1978 J. Phys. B: Atom. Mol. Phys. 11 1131
It is shown that the on-energy-shell single-particle scattering amplitudes obtained from the minimal-coupling and the multipolar forms of the Hamiltonian in non-relativistic quantum electrodynamics are equal to order e2; both forms of the Hamiltonian thus lead to the same differential cross section for Kramers-Heisenberg scattering. The proof given is based directly on the relations which hold between the two transition matrices and is simpler than a previous proof which relied on sum rules derived from the canonical commutation relations. The proof is also more general in that the multipolar Hamiltonian is defined in terms of line integrals along paths which are not assumed to be straight lines but which can be chosen from a large class of possible curves.
A J Dixon et al 1976 J. Phys. B: Atom. Mol. Phys. 9 2617
Cross sections for the ionization of metastable helium atoms, predominantly in the 23S state, at electron energies from the threshold to 1000 eV have been measured using the crossed electron and fast atom beam technique. Corrections are made for the presence of ground-state atoms and a very small concentration of highly excited atoms. The semiquantal binary encounter data agree satisfactorily up to 20 eV, but less well at higher energies. From 200 to 1000 eV, the measured data agree well with Bethe-Born cross sections of Briggs and Kim (1971) for He(23S) provided a correction is made to take account of a spurious contribution to the ionization signal which is only significant at the higher energies. All the various Born cross sections, at high energies, are substantially lower than the present measurements and also the Bethe-Born data, but they are either comparable with or smaller than the measured cross section at its peak.
J -L Heully et al 1986 J. Phys. B: Atom. Mol. Phys. 19 2799
A diagonalisation procedure of the Foldy-Wouthuysen type is considered for the single-electron Dirac Hamiltonian as a basis for many-body applications. A modified procedure is suggested. In the diagonalisation procedure the Dirac equation is completely decoupled into two equations of the Pauli type. The expressions for positive- and negative-energy projection operators in the transformed basis are then trivial and, by performing the inverse transformation, projection operators for Dirac functions are obtained. Applying a similar transformation to the two-electron Dirac-Coulomb Hamiltonian leads to a diagonalised single-electron part and a non-diagonal two-electron interaction. In principle, the effect of the exchange of virtual, transverse photons (Breit interactions) can also be included in the electron-electron interaction and transformed in a similar way. It is indicated how a diagonalisation procedure of this kind can be used as a basis for relativistic many-body calculations in the coupled cluster formulation in analogy with the corresponding non-relativistic procedure.
U Wille 1987 J. Phys. B: Atom. Mol. Phys. 20 6669
M Kimura et al 1987 J. Phys. B: Atom. Mol. Phys. 20 6670
N N Choi et al 1987 J. Phys. B: Atom. Mol. Phys. 20 L827
Non-relativistic rates for the decay of 2s hydrogen atoms to the ground state by single-photon and two-photon emission in the presence of a homogeneous magnetic field of arbitrary strength (0<or=B<or=4.7*106 T) are calculated by variational procedures. Over the whole range of B, two-photon emission is the dominant process. As the magnetic field grows, the two-photon decay rate increases. It is found that the Markov approximation can be applied to the two-photon decay for magnetic fields of strength B>or=4.7*103 T.
B Wallbank et al 1987 J. Phys. B: Atom. Mol. Phys. 20 L833
Differential cross sections for the one-photon emission free-free process are measured as a function of laser intensity when 10.55 eV electrons are scattered from argon atoms in the presence of a pulsed CO2 laser. The cross sections are reported for both single longitudinal-mode and multimode laser pulses up to an intensity of 2*107 W cm-2. For intensities less than 2*106 W cm-2, the cross sections for both laser pulses are found to be linear with intensity, in agreement with perturbation theory. At higher intensities comparisons are made with predictions based on the low-frequency approximation and two laser models. The linear parts of the cross sections are used to obtain estimates of the spatial inhomogeneities in the electron-laser interaction region. Reasonable agreement is found between the experimental cross sections and those predicted by the two laser models.
Y Vitel and M Skowronek 1987 J. Phys. B: Atom. Mol. Phys. 20 6477
Stark widths and shifts of the Ar I 696.5 nm and of the Ar II 480.6, 484.7 and 434.8 nm lines have been measured in the range of electron density and temperature 0.6-1.5*1018 cm-3, 16200-18700 K. These high-density plasmas are created in linear flash-tubes. The plasma parameters are principally determined by measurements of the continuum radiation, from the intensity of optically thick lines in their centre and by the condition of local thermodynamic equilibrium of the plasma. The electron density and temperature radial profiles so deduced are found to be practically flat over more than half of the tube radius. In this quasi-stationary stage of the plasma, the experimental line profiles are recorded by an optical multichannel analyser coupled with a high-dispersion spectrometer. The profiles are analysed and fitted to a Lorentzian function. The Stark parameters, width and shift, show a non-linear dependence against the electron density.
B E J Pagel 1971 J. Phys. B: Atom. Mol. Phys. 4 279
The following applications of spectral line broadening theory to astrophysics are briefly reviewed: (i) understanding qualitative effects visible on spectrograms; (ii) quantitative understanding of hydrogen-line profiles for the determination of stellar atmospheric parameters; (iii) effects of line broadening on the determination of stellar chemical composition.