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ABSTRACT

Kepler-296 is a binary star system with two M-dwarf components separated by 0″. 2. Five transiting planets have
been confirmed to be associated with the Kepler-296 system; given the evidence to date, however, the planets
could in principle orbit either star. This ambiguity has made it difficult to constrain both the orbital and physical
properties of the planets. Using both statistical and analytical arguments, this paper shows that all five planets are
highly likely to orbit the primary star in this system. We performed a Markov-Chain Monte Carlo simulation using
a five transiting planet model, leaving the stellar density and dilution with uniform priors. Using importance
sampling, we compared the model probabilities under the priors of the planets orbiting either the brighter or the
fainter component of the binary. A model where the planets orbit the brighter component, Kepler-296A, is strongly
preferred by the data. Combined with our assertion that all five planets orbit the same star, the two outer planets in
the system, Kepler-296 Ae and Kepler-296 Af, have radii of 1.53 ± 0.26 and 1.80 ± 0.31 RÅ, respectively, and
receive incident stellar fluxes of 1.40 ± 0.23 and 0.62 ± 0.10 times the incident flux the Earth receives from the
Sun. This level of irradiation places both planets within or close to the circumstellar habitable zone of their
parent star.

Key words: binaries: general – methods: data analysis – methods: statistical – planetary systems – stars: individual
(Kepler-296, KIC 11497958, KOI-1422) – techniques: photometric

1. INTRODUCTION

More than half of the stars in our Galaxy are components of
multiple star systems (Duquennoy & Mayor 1991; Raghavan
et al. 2010). From the many hundreds of exoplanets already
discovered (e.g., Rowe et al. 2014), it has been estimated that
as many as 40%–50% may orbit a star with a bound stellar
companion (Horch et al. 2014). In addition, provided that the
stellar components are well separated (a 10> AU), there
appears to be no suppression of the planet occurrence rates for
binary star systems (Wang et al. 2014).

For about half of the transiting exoplanet host stars that are
members of a binary star system, however, establishing which
stellar component the planet orbits is not trivial (Horch
et al. 2014). Often binary stars cannot be resolved as separate
stars. Radial velocity observations of a planet in a binary star
system can help identify which of the stars is the exoplanet host
(except perhaps for an equal mass binary) and in some cases
even reveal the presence of a stellar companion (Gilliland
et al. 2013). Radial velocity observations are not always
available, however, thus it is often the case that we know that a
transiting planet exists but that the planet’s host star remains
uncertain.

The Kepler-296 system, which harbors five small planets, is
a prime example of exoplanets in a binary system. The system

consists of two stars separated by 0″. 22 (Horch et al. 2012)
with a brightness difference of 1.72 mag at 692 nm. Lissauer
et al. (2014) and Cartier et al. (2015) have reported that these
two stars are highly likely to be bound M dwarfs. The Kepler
pipeline detected five transiting planet signals (Batalha
et al. 2013; Tenenbaum et al. 2013, 2014; Burke et al. 2014)
which were designated Kepler Object of Interest numbers
KOI-1422.01 to .0512 by the Kepler team. These five
candidates were later verified as planets through multiplicity
arguments (Lissauer et al. 2014; Rowe et al. 2014).13 Only the
planetary nature of these candidates was verified, however, and
the assignment of each planet to a host star was not determined,
nor whether all of the planets orbited the same star. In other
words, Lissauer et al. (2014) found valid solutions for any of
the planets to orbit any of the stars since the planets remained
small (<4 RÅ) in all cases. More recently, Torres et al. (2015)
performed a rigorous statistical analysis of false positive
probabilities to independently validate the Kepler-296 system,
showing through transit modeling that the planets likely orbit
the same star and subsequently established planet and orbital
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11 NASA Senior Fellow.

12 The KOI numbers for this system do not increase monotonically with orbital
period but represent the order in which they were detected. Hence,
KOI-1422.05 has a shorter orbital period than KOI-1422.04.
13 We note that both Rowe et al. (2014) and Lissauer et al. (2014) report a
planet with an orbital period of 3.62 days. However, we believe that this planet
has an orbital period precisely three times longer at 10.86 days. We discuss this
discrepancy further in Section 7.
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parameters for two of the planets that were found to orbit in the
habitable zone (which was the primary focus of their study).

Herein we take a novel approach to determining the host star
of the five transiting planets. We examine what the transit light
curves tell us about the planet’s host star and then assess which
star the planets are more likely to orbit based on our
understanding of the physical properties of the two stars in
the binary. We then use these analyses to constrain the physical
parameters of these planets.

2. GROUND-BASED OBSERVATIONS OF KEPLER-296

We observed Kepler-296 using the NIRC-2 instrument on
the Keck II telescope using the Laser Guide Star Adaptive
Optics system on 2013-08-08. We obtained a total integration
time of 80 s with the Ks filter and 36 s in J band. As shown in
Figure 1, two stellar components are clearly resolved in the AO
images. The flux ratio between the two stars in the J-band

image is 1.10 ± 0.04 and in the Ks-band image is 1.14 ± 0.04
(brightnesses are shown in Table 1).
Kepler-296 was observed as part of a campaign to obtain

infrared spectra of cool Kepler Objects of Interest (KOIs)
(Muirhead et al. 2012, 2014). Muirhead et al. reported a stellar
effective temperature, T 3520 70eff =  K, and an iron abun-
dance [Fe/H]= −0.08 ± 0.14 dex.
We reanalyzed the spectrum from Muirhead et al. (2014)

using the spectral fitting technique created by Covey et al.
(2010) and improved by Rojas-Ayala et al. (2012) but with a
two spectrum model fit applied to account for the two stars in
the Kepler-296 system. This is a similar strategy to that
employed and described by Montet et al. (2015). Specifically,
we extract information on the temperature and metallicity of
each star from observations of the Ks-band sodium doublet,
calcium triplet, and absorption due to water opacity (the “

H O K22 - index”). In the fitting routine we fixed the ΔJ-band
magnitude difference between the two stars to the values we
measured using the NIRC-2 AO data. This analysis yielded
temperatures for the two stars of 3435 ± 58 and 3770 ± 128 K
and a surface gravity of 4.89 ± 0.04 and 4.74 ± 0.04 dex for
the secondary and primary star, respectively.
When applying this method to combined-light spectra of two

stars, there is a degeneracy between the allowed temperatures
and metallicities of each star. Such degeneracy is reduced if we
assume both stars have the same metallicity, as would be
expected for a close binary pair. Assuming the stars are co-eval
from the same cloud, we then fit for one metallicty, measuring
[M/H] = −0.05 ± 0.29. We note that the parameters found here
are somewhat cooler than Cartier et al. (2015) who used
Hubble Space Telescope (HST) photometry to determine their
stellar properties. We have opted to use our values which are
derived spectroscopically to the photometric properties pre-
viously reported.
To estimate radii, densities, and the flux ratio of the two stars

we used a grid of Dartmouth isochrones (Dotter et al. 2008).
The grid is based on solar-scaled alpha-element abundances,
and was interpolated to a step size of 0.01 M in mass and
0.02 dex metallicity using the interpolation tool provided in the
Dartmouth database.14

We used Teff , glog , and [Fe/H] of the primary to infer stellar
properties from the isochrone grid using a Markov-Chain
Monte-Carlo algorithm. We adopted uniform priors in mass,
age, and metallicity. For ease of computation samples in age
and metallicity were drawn in discrete steps corresponding to
the sampling of the model grid (0.5 Gyr in age and 0.02 dex in
[Fe/H]). For each sample of fixed age and metallicity, we
interpolated the grid in mass to derive Teff and glog , which are
used to evaluate the likelihood function given the spectroscopic

Figure 1. NIRC-2 images of Kepler-296 in Ks and J filters show two stars
separated by 0″. 217. The two images are scaled appropriately to account for
differences in exposure time. The magnitude difference between the two stars is

J 1.10D = and Ks 1.14D = .

Table 1
Summary of Properties Derived from AO Data

Property Primary Secondary

J 13.73 ± 0.03 14.83 ± 0.03
Ks 12.93 ± 0.03 14.07 ± 0.03
(J–Ks) 0.80 ± 0.04 0.76 ± 0.04
ΔR.A. (arcsec) L −0.130
Δdecl. (arcsec) L −0.174
qD (arcsec) L 0.217

14 The Dartmouth isochrone interpolation tool is available from http://stellar.
dartmouth.edu/models/programs/iso_interp_feh.f.
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values for Teff , glog , and [Fe/H]. In addition to Teff and glog ,
we interpolate in mass to derive absolute magnitudes in the Ks
(MKs) and Kepler (MKp) bandpasses for the primary. For the
secondary, we added at each step the Ks contrast from AO
imaging with a Gaussian random error to MKs derived for the
primary and interpolated the grid in MKs to derive Teff , mass,

glog , and MKp for the secondary. Note that by fixing the
secondary parameters to the primary we assume that both stars
have the same age, metallicity, and distance.

We calculated 106 iterations (discarding the first 10% as
burn-in) and verified that the results are unaffected by the
choice of initial guesses. The resulting MCMC chains provide
stellar properties and Ks and Kepler bandpass contrasts for both
components (Table 1). Figure 2 shows both components in a
Teff–density diagram as well as the stellar density posteriors and
the derived dilution in the Kepler bandpass. The stellar
properties we derive for both component stars are reported in
Table 2. We note that the properties for the secondary from the
isochrone fit (Teff 3450 75=  K, glog 4.93 0.06

0.09= -
+ ) are in

good agreement with the independent estimates from the
spectroscopic analysis (Teff 3435 58=  K, glog

4.89 0.04=  ).

Radii of interior models for cool stars are well known to
show offsets from empirical observations such as long-baseline
interferometry (Boyajian et al. 2012) or eclipsing binaries
(López-Morales 2007; Irwin et al. 2009). While recent models
including magnetic field effects on convection show partial
success to reproduce observations (Feiden & Chaboyer 2013),
empirical calibrations are commonly employed to avoid model-
dependent offsets when estimating radii for cool planet host
stars (Mann et al. 2013). Using the most recent Teff R- -[Fe/H]
relation from Mann et al. (2015) we derive empirical radii of
0.51 R for Kepler-296 A and 0.35 R for Kepler-296 B, which
are ∼6%–9% (0.5 0.7s- ) larger than the radii inferred from the
isochrone grid. Importantly the fractional offsets are similar for
both components and hence the densities of Kepler-296 A and
B should not be strongly affected by differential model-
dependent offsets.
Kepler has 4″ pixels, therefore the two components, which

are separated by 0″. 217, are unresolved in the Kepler data and
can be treated as a point source. From our MCMC modeling we
estimate a brightness difference in the Kepler bandpass of
ΔKp=1.41 ± 0.08 which is equivalent to saying that 78.5 ±
1.2% of the light is coming from the primary and 21.5 ± 1.2%
from the secondary star in the binary. This is in good agreement
with the results of Gilliland et al. (2015) and Cartier et al.
(2015) who report HST observations that measure a brightness
ratio of the two components of 5-to-1. Hereafter we define
dilution as the proportion of total light coming from the other
star, so the dilution of the primary star is 0.215 ± 0.012.
Our analysis of the stellar properties relies on the two stars

being physically bound. There are compelling arguments in
previous work demonstrating that the two stars are highly likely
to form a physically bound binary. Cartier et al. (2015) used
model isochrones and performed a numerical analysis to show
that the chances of observing two stars with these colors by
chance is extremely unlikely. Similarly, Torres et al. (2015)
look at the stellar density in this region of the sky where
Kepler-296 is and used Galactic models to predict the chance
alignment of an unbound star is very small compared with a
bound companion scenario. In addition, if these stars were
unbound this would likely result in two sets of stellar lines
caused by differing radial velocities. However, Torres et al.
(2015) find no additional lines of another star appear in a Keck/
HIRES spectrum implying that the two stars have very similar
radial velocities, as would be expected if they were bound.

3. KEPLER LIGHT CURVE MODELING

We modeled the long cadence Kepler data (Quintana et al.
2010; Twicken et al. 2010b) using a light curve model
described by Rowe et al. (2014), Barclay et al. (2013), and
Quintana et al. (2014) that comprises limb darkened transits
(Mandel & Agol 2002) of five planet and allows the planets to
have eccentric orbits. The parameters we use to describe the
model are the mean density of the star, a linear and a quadratic
limb darkening coefficient, a photometric zero-point, and for
each planet, the mid-point of the first transit, the orbital period
of the planet, the impact parameter at time of mid-transit, the
planet-to-star radius ratio and two eccentricity vectors e sin w
and e cos w where e is the eccentricity and ω is the argument of
the periastron. We also include an additional white noise term
that is added in quadrature with the uncertainty reported in the
Kepler data products. Finally, we include the dilution from the
other star as a model parameter.

Figure 2. Top panel: Dartmouth isochrones with an age of 6 Gyr and
metallicities of 0.64, 0.34, 0.06, 0.22- - - , and 0.48, roughly corresponding
to the 2 σ error bar from spectroscopy. The positions of Kepler-296A and B
based on the median of the MCMC posteriors are shown as the red diamond
and the blue triangle, respectively. Middle panel: posteriors for the density of
both components. Bottom panel: posterior of the dilution in the Kepler
bandpass.
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We used the Q1–Q15 Kepler light curves. This target falls
onto the failed Module 3 which resulted in no data for this
source being taken in Quarters 8, 12, and 16. We used pre-
search conditioned light curve data (Twicken et al. 2010a)
which minimizes the instrumental signals. To remove astro-
physical variability such as star spots we used a running
median filter but weighted the transits zero in this filtering so as
to avoid overly distorting the transit profiles.

We used emcee, an implementation of an affine invariant
Markov Chain Monte Carlo algorithm (Goodman &
Weare 2010; Foreman-Mackey et al. 2013) to efficiently
explore the posterior probability of our transit model. We have
made the assumption that all the planets orbit a single star but
that star could either be Kepler-296A or Kepler-296B (for a
discussion of the validity of this assumption see Section 6). In
the sampling we assumed uniform priors on the mean stellar
density between 10−4 and 200 g cc−1 and a dilution, f, that is
uniform between 0 and 1 where the total light from the system
is unity and the light from the transited star is f1 - .

We use uniform priors on the photometric zero point, the
transit mid-point times, and the orbital period of the planets.
The impact parameters are positive and uniform as is the
planet-to-star radius ratio. Following Kipping (2013) we use a
prior on the eccentricity of the orbits of the planets that takes
the form of a beta distribution

P
B a b

e e
1

( , )
(1 ) (1)a b1 1= -b

- -

where e is the orbital eccentricity of each planet and B is the
beta function. Rowe et al. (2014) found that for multiple
transiting planet systems the best fitting values for parameters
(a b, ) are a = 0.4497 and b = 1.7938 which we use in this
work. In addition, we do not allow eccentricities that would
allow for crossing orbits of any of the planets by excluding
solutions where the periastron (or apastron) values are greater
than (or less than) the semimajor axis of adjacent planets. We
do, however, include a e1 term in our likelihood function
because our choice to sample in e sin w and e cos w (rather
than e and ω) introduces a bias toward high values of e if not
modeled correctly (Eastman et al. 2013).

Limb darkening is poorly constrained in the regime of cool
stars (Claret et al. 2012; Csizmadia et al. 2013), so we assume
a uniform distribution of the two limb darkening parameters but
do enforce priors that keep the stellar brightness profile
physical (Burke et al. 2008).

In each simulation we used 800 chains with each chain
taking 50,000 steps in the posterior probability. However, we
discarded the first 10,000 steps in each chain for burn-in which
leaves 32M samples of the posterior probability.

4. MODEL COMPARISON

In our MCMC sampling we assumed uniform priors on
stellar density and dilution. However, we are not ignorant of
these parameters; indeed Section 2 describes our efforts to
constrain these parameters. The reason for using uniform priors
is that sampling from a bi-model parameter space which has
well separated modes in a single model is difficult for standard
MCMC algorithms (Kruschke 2014), while performing two
MCMC simulations would necessitate computing the margin-
alized likelihood which is a hard problem (Loredo 1999).

We used a technique called importance sampling to re-
sample the posterior under different priors than were used in
the MCMC sampling. This is a well tested and used method
when the posterior is difficult to sample directly (Hogg
et al. 2010).15 Here we use importance sampling as a Bayesian
evidence estimator. In this example we have two models,
which we label 1q and 2q , with two different sets of priors that
contain our prior knowledge of the dilution and density for the
planets orbiting the brighter star and the fainter star,
respectively. Let α be the model we actually sampled from
which is uniform in density and dilution. So we have K samples
of f( , )k kr where

( ) x
x

x
f p f

p f p f

p
, ( , , )

( , ) ( , )

( )
(2)k kr r a

r a r
a

~ =

f( , )k kr is drawn from xp f( , , )r a∣ where x is the observed
data. Now what we want to compute is the marginalized
likelihood of the data under models 1q and 2q , e.g.,

( ) ( )x xp d df p f, , (3)n nòq r r q=

( ) xd df p d p f, ( , ) (4)nò r r q r=

where p f( , )nr q∣ is the prior we want to enforce ( nq can be either
1q or 2q ) and is based on the measured density qr and dilution fq
with uncertainties qdr , fqd we calculated in Section 2, such that

( ) ( )( )p f N N f f f, ; , ; , . (5)n q q q qr q r r dr d=

Using the posterior samples from our MCMC sampling, we can
approximate the integral as

( )
( )

( ) ( )

( ) ( )

( )

x x
x
x

x

x

x
x

x

x

p d df p f p f
p f

p f
p

d df
p f p f

p f p f
p f

p

p K

p f

p f

, ( , )
( , , )

( , , )
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, ,
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,
,
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=

which allows us to re-sample our data under the new priors. For
a straight comparison between 1q and 2q , we can calculate

( )
( )

( )
( )
x

x

p

p

p f

p f

,

,
. (7)

k
K

k k

k
K

k k

1

2

1 1 1 1

1 2 2 2

q

q

r q

r q
»

å

å

=

=

In Figure 3 we show the sampling in dilution and mean
stellar density under uniform priors in gray and the two
different models, 1q and 2q in blue and red, respectively. The
blue model prior distribution overlaps significantly more with
the sampled distribution than the red model, hinting that we are
going to strongly prefer this model. We used Equation (7)
under our modeling and found x xp p( ) ( ) 47131 2q q =∣ ∣ , that is
we are confident that the planets are orbiting the primary with a
confidence level of 99.98%, provided all planets orbit the
same star.

15 In this work we refer to the technique presented as importance sampling
following Hogg et al. (2010). However, we note that other authors such as
Cameron & Pettitt (2013) prefer to refer to the method as pseudo-importance
sampling or importance sample re-weighting to make it clear that the method is
an approximation using MCMC.
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The reason why we are able to infer the planet’s host star is
that the various transiting planet parameters are not entirely
degenerate with dilution and stellar density. The key
parameters that control the shape of the various transits are
the stellar density which decreases with increasing transit
duration, the planet-to-star radius ratio which increases with

transit depth, and the impact parameter which causes transits to
be more “V”-shaped and decreases transit depths. So, for
example, the transit can only be made so short by increasing
the impact parameter before it becomes too V-shaped to fit the
data: this limits the values stellar density can take.

5. REVISED PARAMETERS WITH THE PLANETS
ORBITING THE PRIMARY

Given we are very confident that all the planets orbit the
primary star (provided they all orbit the same star, this is
discussed in detail in Section 6), we can revise the stellar and

Figure 3. Sampled posterior probability based on the Kepler light curve data
and priors. The sampled posterior is shown in gray, the prior if the five planets
orbit Kepler-296A is shown in blue and the prior if the planets orbit Kepler-
296B in red. The upper panel shows the joint-distribution of dilution and mean
stellar density. The sampled data is shown as gray dots and the 1, 2, and 3-σ
bounds of this sampling are shown as gray lines of decreasing opacity. The
dark blue and red ellipses are the 1-σ joint distribution of the prior for Kepler-
296 A and B respectively. The fainter blue and red ellipses are the 3-σ bounds.
Note that the sampling of the dilution-ρ distribution show negligible
covariance. The central panel shows the mean stellar density marginal
posterior distribution and the lower panel shows the dilution marginal posterior
distribution. The Kepler-296A priors intuitively look more consistent with the
observed Kepler light curve data than the Kepler-296B prior. We used
importance sampling to quantify this intuition and we conclude with 99.9%
probability that the five planets orbit Kepler-296A.

Figure 4. Transits of the five planets in the Kepler-296 system. The planets are
in order of increasing orbital period from planet b to f. The data have been
folded on the best fitting orbital period. The observed data is shown in black
and binned data in blue. The best fitting model is shown in red. Note that while
we show the binned data, no calculations are performed on these data.
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planetary properties we calculated from our light curve
modeling, properly accounting for the effect of dilution from
the stellar companion. Given that a posterior probability is
proportional to the product of the prior probability and the
likelihood we can calculate the system’s parameters by
weighting the original samples by the marginalized likelihood
under the model of the planet orbiting Kepler-296 A where
weights are equal to the probability x xp p( ) ( )q a∣ ∣ . In Table 3
the weighted median and weighted quartiles are reported where
a weighted median has 50% of the weight on either side. Figure
4 shows a transit model calculated using the MCMC sample
with the highest weighted likelihood plotted over the phase-
folded Kepler observations. In addition to the sampled
parameters we report the ratio of the semi-major axis to the
stellar radius (a Rs), the semi-major axis (a), the planetary
radius (Rp), and the stellar flux incident on the planets (Sp).
a Rs depends only on stellar density and orbital period, while a
and Rp rely on the stellar radius. We draw n stellar radii
samples from the MCMC stellar property chains to properly
include the stellar radius uncertainty and multiply these by a Rs
and R Rp s to infer a and Rp, where n is the number of transit
model samples. Sp in solar-Earth units can be parametrized as a
function of a Rs and Ts so that

S S
R

a

a

R

T

T
(8)p

s
2

s
4

=
æ

è
çççç

´
ö

ø
÷÷÷÷
æ
è
ççç

ö
ø
÷÷÷Å

Å



where SÅ is the incident flux on the Earth from the Sun,
a R( )Å  is the semi-major axis of the Earth in units of stellar
radius where we use 215.1 and T is the effective temperature
of the Sun which we have taken as 5778 K.

The five planets have radii of between 1.5 and 2.1 RÅ, which
places Kepler-296A into an elite group of planets with five
small transiting planets that also includes Kepler-62 (Borucki
et al. 2013), Kepler-186 (Quintana et al. 2014), and Kepler-444
(Campante et al. 2015). Kepler-296A is also one of just a
handful of stars to host a sub-2 RÅ planet that receives less
incident flux than Earth receives from the Sun (Kepler-296 Af).
Kepler-296 Ae and Af have been previously reported as
potential habitable zone planets (Rowe et al. 2014; Torres
et al. 2015)—the region around a star where liquid water could
exist given favorable atmospheric conditions. Kopparapu
et al. (2013) published theoretical boundaries of incident flux
for circumstellar habitable zones; we find that Kepler-296 Ae
falls into the Kopparapu et al.’s “optimistic” habitable zone and
Kepler-296 Af in their “conservative” habitable zone.

Torres et al. (2015) model and report parameters for the
outer two planets, the habitable zone planets, in the Kepler-296

Table 2
Derived Stellar Properties

Property Primary Secondary

Teff (K) 3740 130
130

-
+ 3440 75

75
-
+

glog (dex) 4.7740.059
0.091+ 4.933 0.063

0.087
-
+

[Fe/H] (dex) 0.08 0.30
0.28- -

+ 0.08 0.30
0.28- -

+

Radius (R) 0.480 0.087
0.066

-
+ 0.322 0.068

0.060
-
+

Mass (M) 0.498 0.087
0.067

-
+ 0.326 0.079

0.070
-
+

ρ(g cc−1) 6.4 1.5
3.2

-
+ 14 4

8
-
+

ΔKp 0 1.409 0.070
0.085

-
+

Dilution 0.215 ± 0.012 0.785 ± 0.012

Table 3
Inferred Stellar and Planetary Parameters from our MCMC Modeling

Body Parameter W. Med 84.1% 15.9%

Kepler-296 A ρa (g cc−1) 7.19 +0.9 −1.0

1g 0.78 +0.20 −0.27

2g −0.13 +0.34 −0.26

Dilution 0.215 +0.012 −0.012

Kepler-296 Ac Epoch (BKJDb) 135.9229 +0.0013 −0.0013
Period (days) 5.8416366 +1.0e-5 −1.0e-5
Impact parameter 0.25 +0.18 −0.16
R Rp s 0.0381 +0.0014 −0.0012

e cos w 0.000 +0.042 −0.052
e sin w −0.000 +0.017 −0.051
Radius (RÅ) 2.00 +0.33 −0.32

Incident Flux (SÅ) 14.8 +2.7 −2.3

a Rs 23.5 +0.9 −1.1

a (AU) 0.0521 +0.0088 −0.0086
Eccentricity (3-σ upper limit) <0.33 L

Kepler-296 Ab Epoch (BKJD) 131.1285 +0.0030 −0.0039
Period (days) 10.864384 +5.1e-5 −4.6e-5
Impact parameter 0.65 +0.09 −0.19
R Rp s 0.0308 +0.0018 −0.0021

e cos w 0.000 +0.086 −0.075
e sin w 0.01 +0.14 −0.04
Radius (RÅ) 1.61 +0.29 −0.27

Incident Flux (SÅ) 6.5 +1.2 −1.0

a Rs 35.5 +1.4 −1.7

a (AU) 0.079 +0.013 −0.013
Eccentricity (3-σ upper limit) <0.33 L

Kepler-296 Ad Epoch (BKJD) 133.6496 +0.0022 −0.0022
Period (days) 19.850291 +6.1e-5 −5.7e-5
Impact parameter 0.26 +0.18 −0.16
R Rp s 0.0398 +0.0014 −0.0012

e cos w 0.000 +0.046 −0.0042
e sin w −0.001 +0.017 −0.050
Radius (RÅ) 2.09 +0.33 −0.32

Incident Flux (SÅ) 2.90 +0.52 −0.44

a Rs 53.1 +2.1 −2.6

a (AU) 0.118 +0.020 −0.020
Eccentricity (3-σ upper limit) <0.33 L

Kepler-296 Ae Epoch (BKJD) 136.0350 +0.0064 −0.0057
Period (days) 34.14211 +0.00025 −0.00025
Impact parameter 0.34 +0.19 −0.21
R Rp s 0.0291 +0.0018 −0.0015

e cos w 0.000 +0.053 −0.052
e sin w 0.000 +0.043 −0.042
Radius (RÅ) 1.53 +0.27 −0.25

Incident Flux (SÅ) 1.41 +0.25 −0.21

a Rs 76.2 +3.0 −3.7

a (AU) 0.169 +0.029 −0.028
Eccentricity (3-σ upper limit) <0.33 L

Kepler-296 Af Epoch (BKJD) 162.6069 +0.0071 −0.0072
Period (days) 63.33627 +0.00060 −0.00062
Impact parameter 0.55 +0.11 −0.24
R Rp s 0.0344 +0.0021 −0.0019

e cos w −0.000 +0.071 −0.078
e sin w −0.00 +0.10 −0.04
Radius (RÅ) 1.80 +0.31 −0.30

Incident Flux (SÅ) 0.62 +0.11 −0.10
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system. However, Torres et al. provide planet parameters for
both stellar host scenarios. The planet parameters they report
from their multi-modal nested sampling using MULINEST (Feroz
& Hobson 2008; Feroz et al. 2009) are largely consistent with
our results if we consider only their model with planets orbiting
the larger star. We see somewhat significant differences in
Torres et al.’s derived planetary parameters. The discrepancy
can be explained by the different stellar properties Torres et al.
assume for the two stars compared with the analysis we present
here. Torres et al. use spectroscopic parameters reported by
Muirhead et al. (2014) who used just a single stellar spectrum
model. By using two model spectra modeling we are able to
improve upon previous stellar properties for both the stars in
this system, removing the bias inherent when ignoring the
companion.

6. THE VALIDITY OF OUR ASSUMPTION THAT THE
PLANETS ORBIT THE SAME STAR

A critical assumption made in the analysis so far is that all
five planets orbit the same star. However, there is at least one
example of a planetary system with planets orbiting different
stellar members of the system—Kepler-132 (Lissauer
et al. 2014). In the Kepler-132 system, two planets orbit one
stellar companion of a binary while one planet orbits its
companion. As a result, it is important that we assess whether
our assumption that the planets all orbit the same star is
justified.

In order for the planets to orbit different stars, and yet be
seen in transit, the orbital planes of the two planetary systems
must nearly line up (their angular momentum vectors must
point in nearly the same direction).

In approximate terms, the difference in angle between the
two orbital planes (of the two putative planetary systems) must
be less than the alignment necessary for the planets to transit,
i.e.,

R

a

R* 0.3

0.2 AU
0.0070 rad 0 . 4, (9)

P
qD ~ ~ ~ ◦

where we have used the small angle approximation. In other
words, the required alignment is extremely tight, with a
tolerance of less than half a degree. The binary has a projected

separation of about 35 AU, so the question becomes: What is
the probability that nature will produce two planetary systems
around the two binary components separated by at least 35 AU,
such that the orbital angular momenta point in the same
direction (within 0 . 5◦ )?

6.1. Considerations of Disk Formation

Molecular cloud cores are the sites of star formation and
their angular momentum profiles drive the formation of the
circumstellar disks (which, in turn, provides the sites for planet
formation). The rotation rate of these cores is estimated by
measuring the velocity gradient of a given molecular line
across a map of the core (starting with Goodman et al. 1993).
However, the direction of the inferred (two-dimensional)
angular momentum vector varies from point to point within
the map (Caselli et al. 2002). As a result, the mean velocity
gradients have values of 1 2~ - km s−1 pc−1, but the direction of
the rotation varies by 10°–30° across the map. Moreover, the
emission maps show a coherence length of ℓ 0.01» pc, i.e., for
two points separated by distances larger than ℓ, the directions
of the rotation vectors are uncorrelated. Here, “uncorrelated”
means chosen randomly from the distribution of values within
the measured range, where the measured range is of order 30°.
(Note that the range is not 360°; if that were the case, the
rotation vectors would take on a purely random direction for
points separated by distances greater than ℓ.)
We can build a simple model of star/binary/disk formation

using the results given above. As a first approximation,
consider the density profile of the initial molecular cloud core
to have the isothermal form

a

Gr2
, (10)

2

2
r

p
= L

where a is the isothermal sound speed and 1 2L ~ - is the
overdensity factor (Fatuzzo et al. 2004) that accounts for the
observed condensation velocities (Lee et al. 1999). The
corresponding enclosed mass is thus given by

M r
a

G
r( )

2
. (11)

2

= L

The radius rP that initial encloses the mass MP of the primary
can be written in the form
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We thus note that r ℓ 0.01p ~ ~ pc, i.e., the sphere that initially
contained the mass of the primary is comparable to the
coherence length observed in molecular cloud cores. As a
result, the primary, and the inner disk that forms its planetary
system, can have a different direction for its angular
momentum vector than the material that collapses later to
form the secondary. Further, we would expect that the angle
between the angular momenta of these different layers of the
core to be tens of degrees. With this type of initial condition,
the direction of the orbit of the binary companion is predicted
to differ from that of the planetary system by tens of degrees
(also see Spalding et al. 2014).

Table 3
(Continued)

Body Parameter W. Med 84.1% 15.9%

a Rs 115.1 +4.5 −5.6

a (AU) 0.255 +0.043 −0.042
Eccentricity (3-σ upper limit) <0.33 L

Notes. Parameters are the weighted quartiles of the posterior distribution where
the weights were calculated via importance sampling.
a The stellar radius and stellar mass for Kepler-296A are listed in Table 1 and
are R 0.480 0.076=  , and R 0.498 0.076=  . The stellar mass and
radius are not strictly consistent with the density present here because this
density was calculated using additional information from the transit model.
b The time zeropoint we use id the Barycentric Julian Date minus a fixed offset
of 2454833 days. This is referred to as BKJD and is the time system used in all
Kepler data products.
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As a consistency check, consider the centrifugal radius
produced during the collapse. When the inner portion of the
core has collapsed to form the primary, the centrifugal radius

R
G M

a16
2 20 AU. (13)P

C

3 3 2

3 8
=

W

L
» -

As a result, the primary and its planetary system, whose size is
determined by RC to leading order, can fit inside the observed
binary orbital separation of the Kepler-296 system (which has a
projected separation of 35 AU and hence expected separation
of about 70 AU).

This simple theoretical argument predicts that the disks
observed in binary systems should not be perfectly aligned with
the angular momentum vectors of the binary orbits and that the
disks surrounding the two stars should not be aligned with each
other. Since disks polarize the light scattered from their central
stars, polarization measurements can be used to estimate the
angular orientation of disks on the plane of the sky. Such a
study has been carried out for a collection of 19 binary and
higher-order multiple T Tauri systems (Jensen et al. 2004); the
results show that disks in binary systems are aligned with each
other to within about 20, but are not exactly coplanar. A
similar study for southern star formation regions (Monin
et al. 2006) finds similar results; for 15 binary systems, the
observed angle differences show a distribution of values, with
all but one in the range 0°–40°, and more than half of the
sources showing relatively small angles 10qD < .

Both the theoretical argument and the observational studies
indicate that two planetary systems associated with the two
members of a binary pair should be roughly—but not exactly—
aligned. The range of possible relative orientation angles
appears to be about 20 . We can thus make a simple estimate
of the probability to find highly aligned planetary systems: if
the relative inclination angle is drawn uniformly from the range

20 20q-  < D < , and if we need 0 . 5qD <∣ ∣ ◦ to observe
transits, then the required alignment would occur only about 1
out of 40 times (2.5%).

6.2. Probability

This subsection considers a simple probability argument: the
five periods of the planets are observed to be almost equally
spaced in a logarithmic sense: the period ratios between
successive pairs of planets are all ∼1.8 (more precisely, 1.88,
1.83, 1.71, and 1.86, with a mean of 1.82± 0.066). This chain
of nearly equal period ratios can naturally be produced if the
planets experienced convergent migration during their early
stages of evolution. On the other hand, if one or more planets
orbit the secondary (with the rest of the planets orbiting the
primary), then this set of nearly equal period ratios would be
highly unlikely.

We can understand (roughly) how convergent migration
results in regular orbital spacing as follows: when multiple
planets migrate within a disk, they often lock into mean motion
resonance (MMR) and move inward together (this phenom-
enon has been studied by many authors, starting with
Goldreich 1965). Indeed, since orbital eccentricity is easily
excited during migration, the planets must often be in, or near,
MMR to avoid orbit crossing and instability. The most
common and strongest resonances in this context are the 2:1
and 3:2 MMR (Murray & Dermott 1999). With these period
ratios, the semimajor axes of the planets are separated by

factors of f » 1.59 and 1.31, respectively, so that orbital
spacings in this range are naturally produced. Moreover,
detailed numerical studies (Rein 2012) indicate that the period
ratios for the multiplanet systems discovered by Kepler are
indeed consistent with convergent planet migration. Additional
stochastic forces (e.g., due to turbulent fluctuations in the disk)
act to spread out the orbital spacing (Adams et al. 2008), so
that values in the range 1.3–2 are naturally produced (including
the value of 1.8 observed for Kepler-296).
If the five planets detected in association with Kepler-296 do

not orbit the same star, then there should be no correlation (or
anti-correlation) between the orbital periods of the planets
orbiting the two different stars. Since there are many possible
ways for this scenario to be realized, we illustrate this point
here by assuming that one planet orbits the secondary, while
the other four planets orbit the primary. The period of the
secondary planet should be independent of the periods of the
four primary planets, so there is some chance that the
secondary planetary period would be close to one of the
periods of the others—close enough to render the system
apparently unstable if one mistakenly considered all of the
planets to orbit a single star.
To make a numerical estimate, suppose that the orbital

periods are distributed with a log-random distribution. The
observed planets have periods with a spacing of ∼1.8 (as
described above). However, if a planetary pair were to have a
period ratio that is too close to unity, it would most likely be
unstable (in the absence of a well-tuned resonant state). As a
general rule, orbital instability sets in when the semi-major axes
are too close, more specifically when their separation is less
than several mutual Hill radii. In practice, however, we find
that the Kepler multi-planet systems have extremely few period
ratios less than 4:3, i.e., the period ratio is almost never
observed to be less than 4/3 = 1.33.
Suppose we have a chain of planets with a factor of 1.8

spacing in period and we choose another planet from a log-
random distribution. Then the chances of the new planet being
too close to another planet in the chain is given approximately
by the expression

P
ln(4 3)

ln(1.8)
0.49. (14)= »

In other words, about 49% of the time, if you choose a planet
around the secondary, it would have a period that is too close to
one of the other planets (orbiting the primary), such that it
would apparently lead to an unstable system.
Note that one could derive a wide range of values for the

above probability, where the result depends on how you define
the system and what information you take as given. Let us now
consider a more extreme case. Suppose that you have a
planetary system with four planets orbiting the primary, with
the observed factor of ∼1.8 spacing in orbital periods. And then
suppose that you choose a fifth planet to orbit the secondary. In
principle the fifth planet can have any orbital period and be
stable. For the sake of definiteness, we take the allowed range
of periods to be the range observed in the system, i.e., a factor
of ∼11 in period. If we then require that the fifth planet
continue the chain of period ratios, it must have a value in the
range 1.82 ± 0.066 times the period of the fourth planet. Thus,
the probability of the fifth planet continuing the chain of period
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ratios is approximately given by

P
ln(1.886 1.754)

ln(11)
0.030. (15)» »

In other words, the probability of continuing the observed chain
of orbital period ratios is about 3% (and this value would be
smaller if we allowed for a wider range of orbits to
choose from).

6.3. Discussion of Planetary Alignment

The two arguments given above suggest that two highly
aligned planetary systems orbiting the two members of a binary
pair will be rare. More specifically, the chances of forming such
a system (Section 6.1) and the chances that planets orbiting two
stars produce a coherent chain of period ratios (Section 6.2) are
both approximately 2% 3%- .

Either argument, by itself, is highly suggestive but not
definitive. With a 3% occurrence rate, if we observe ∼35 binary
systems containing multiple transiting planets, then we would
expect to find sufficient alignment in (of order) one system. In
this case, however, the two arguments are independent. We
need to see the five planets of the Kepler-296 system in transit
(a 2.5% effect) and also see the observed chain of period ratios
(another 3% effect). The chances of both properties occurring
is thus much lower, with a probability P (0.025)(0.03)~ =
7.5 10 4´ - . With this probability, we would need to observe
more than 1300 binary systems with multiple planets in order
to expect one with these properties.

In the most recent release of Kepler planet candidates, there
are 608 multiple transiting planet systems comprising 1492
planet candidates (Mullally et al. 2015). Of those systems, only
Kepler-132 presents a compelling case for a binary star with
transiting planets orbiting both stars. The planets in the Kepler-
132 system are on considerably shorter periods (6.1, 6.4, and
18 days) and orbit a star more than twice the size of the planets
in the Kepler-296 system, hence the probability of the observed
planets to transit Kepler-132 is much higher. The probability to
transit Kepler-132c and d is roughly 8% and 4%, respectively,
whereas the probability for Kepler-296Ae and f to transit is
roughly 1.3% and 0.9%, respectively. Therefore, it is many
times more probable that two stars have disks aligned enough
for transiting planets in the Kepler-132 system than in the
Kepler-296 system. Indeed, we should not be surprised to see a
false positive case occurring for close-in two-planet systems.

Perhaps a fairer family to compare Kepler-296 to is a system
with at least five transiting planets. Of the 608 multi-transiting
planet systems just 24 host at least 5 planet candidates,
inclusive of Kepler-296. At most 50% of these five planet
systems are likely to be binaries (Wang et al. 2014). Taking the
false positive rate for systems like Kepler-296 as 7.5 10 4´ -

and having (0.5 × 24) systems, we would expect to see 0.009
false multi-systems, making it very likely that the planets in the
Kepler-296 system orbit the same star. This result validates the
assumptions made in earlier sections and leads us to the
conclusion that the five planets orbit Kepler-296A.

7. NOMENCLATURE

We want to briefly touch upon our naming system for
the planets in this system. The five planets have KOI
numbers 1422.01, 1422.03, KOI-1422.02, KOI-1422.05, and
KOI-1422.04 in order of increasing orbital period. Owing to

the additional data available to us in this work compared to that
used by Rowe et al. (2014) and Lissauer et al. (2014), we
realized that KOI-1422.03 had an orbital period of 10.86 days,
a factor of precisely three longer than was reported by Rowe
et al. (2014) and Lissauer et al. (2014) who assigned the
Kepler number 296 to this system. To retain consistency with
Rowe et al. (2014) we stick with the letter b to identify
KOI-1422.03 even though planet b now has a longer orbital
period than planet c. We note that recent Kepler planet
candidate catalogs all list KOI-1422.03 with an orbital period
of 10.86 days (Burke et al. 2014; Mullally et al. 2015; Rowe
et al. 2015). In addition, Torres et al. (2015) used 10.86 days as
the orbital period of KOI-1422.03 in their analysis of the stellar
density (G. Torres & D. Kipping 2015, private communica-
tion). All papers subsequent to the earlier discovery papers find
an orbital period of 10.86 days and we believe that it is highly
probable that this is the correct orbital period solution.
In our naming scheme we also use the letter A after the

primary star name to make it clear that the planets orbit the
primary star in the binary. Consequently, identifiers now used
for these planets, in order of increasing orbital period are
Kepler-296 Ac, Kepler-296 Ab, Kepler-296 Ad, Kepler-296 Ae
and Kepler-296 Af. We summarize this information in Table 4.

8. CONCLUSIONS

The Galaxy is expected to contain many binary systems with
planets orbiting one or both stellar components. In this work,
we have explored whether it is likely that one will observe
planets (in multi-planet systems) transiting both stellar
components. For the solar system architecture of the Kepler-
296 system, this exploration strongly indicates that all five of
the observed planets are likley to orbit the primary.
The paper presents a statistical analysis which demonstrates

that if the planets all orbit the same star, then that host star must
be the brighter component of the binary system. For this
analysis, we start by modeling the Kepler light curve of Kepler-
296 under a prior with no preference for stellar properties (see
Section 3). We then compare the two competing models of (a)
planets orbiting the brighter star or (b) planets orbiting the
fainter star, where the comparison uses importance sampling
under the different priors (Section 4). We find that the planets
are significantly more likely to orbit the brighter star.
The paper also provides a supporting statistical argument for

the orbital alignment of high multiplicity transiting planet
systems such as Kepler-296. This analysis (Section 6) indicates
that it is highly unlikely that one would observe planets
transiting both stars—where the odds are less than about 1 in
1000 for this example. The reason for this low probability of
observing planets in transit orbiting both stars is twofold: (a)
the probability of randomly observing a system with planets
orbiting both stars such that the system is apparently stable and
the planets are in an apparent (near) resonant chain is only a

Table 4
Nomenclature for the Kepler-296 A Planets

Porb (days) Burke et al. (2014) Rowe et al. (2014) This Work

5.8 KOI-1422.01 Kepler-296 c Kepler-296 Ac
10.9 KOI-1422.03 Kepler-296 b Kepler-296 Ab
19.9 KOI-1422.02 Kepler-296 d Kepler-296 Ad
34.1 KOI-1422.05 Kepler-296 e Kepler-296 Ae
63.3 KOI-1422.04 Kepler-296 f Kepler-296 Af
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few percent, and (b) the probability of having the two stars
with aligned circumstellar disks is also only a few percent. The
probability of realizing both of these independent and unlikely
events occurring is thus low.

The combination of the two analyses described above
provides a compelling argument that the currently observed
planets in the Kepler-296 system must orbit the brighter star.
With this finding taken as given, the planetary properties can be
determined to greater precision than before. This paper thus
reports revised estimates for the planetary radii, orbital periods,
and incident stellar fluxes for the outer planets in the system
Kepler-296 Ae and Kepler-296 Af (see Section 5). This update
to the planetary parameters is important as these planets are
thought to orbit within or near the habitable zone (see also
Torres et al. 2015) of their host star (argued here to be the
primary, Kepler-296A). After the first discovery of the first
Earth-sized planet in the habitable zone (Quintana et al. 2014),
and a dozen subsequent detections (Torres et al. 2015), we
expect the Galaxy to be brimming with analogous planets. The
discovery and characterization of such planetary systems thus
poses a rich problem for future work.

This paper includes data collected by the Kepler mission.
Funding for the Kepler mission is provided by the NASA
Science Mission Directorate. We would like to express our
gratitude to all those who have worked on the Kepler pipeline
over the many years of the Kepler mission. Some Kepler data
presented in this paper were obtained from the Mikulski
Archive for Space Telescopes (MAST) at the Space Telescope
Science Institute (STScI). STScI is operated by the Association
of Universities for Research in Astronomy, Inc., under NASA
contract NAS5-26555. Support for MAST for non-HST data is
provided by the NASA Office of Space Science via grant
NNX09AF08G and by other grants and contracts. This research
has made use of the NASA Exoplanet Archive, which is
operated by the California Institute of Technology, under
contract with the National Aeronautics and Space Administra-
tion under the Exoplanet Exploration Program. This research
made use of APLpy, an open-source plotting package for
Python hosted at http://aplpy.github.com. This work was
supported by a NASA Keck PI Data Award, administered by
the NASA Exoplanet Science Institute. Some of the data
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ship with the California Institute of Technology and the
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by the generous financial support of the W. M. Keck
Foundation. The authors wish to recognize and acknowledge
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of Maunakea has always had within the indigenous Hawaiian
community. We are most fortunate to have the opportunity to
conduct observations from this mountain. E.V.Q. is supported
by a NASA Senior Fellowship at the Ames Research Center,
administered by Oak Ridge Associated Universities through a
contract with NASA. B.T.M. is supported by the National
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