A study of possibility to model the learning process on base of different forms of timing-dependent plasticity (STDP) was performed. It is shown that the learning ability depends on the choice of spike pairing scheme and the type of input signal used for learning. The comparison of performance of several STDP rules along with several neuron models (leaky integrate-and-fire, static, Izhikevich and Hodgkin-Huxley) was carried out using the NEST simulator. The combinations of input signal and STDP spike pairing scheme, which demonstrate the best learning abilities, were extracted.